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Introduction
Online learning, is to make a sequence of accurate predictions given
knowledge of the correct answer to previous prediction tasks.
Online learning applications: targeted advertising and online
ranking.
The purpose of this work is to propose a user driven privatization
mechanism that allows the learner to infer the desired trends and
patterns without compromising an individual users privacy.

Motivation
Although individuals are willing to share their data, they are not
expecting the disclosure of identities.
The goal of learning is to uncover “relationships” or “trends” from
historical data, which might be possible to be separated from the
information of individual identities.
The adversary may observe the input data of online learning system.

Related works
A differentially private OCO method [P. Jain’12]
Privacy-preserving deep learning [R. Shokri’15]

Full Information Online Convex Optimization (OCO)

Consider an online learning system that receives a stream of functions
(f1, f2, · · · , fT) and each ft : S →R is a convex cost function representing
data from one individual. The system is required to output a sequence of
parameter estimates (w1,w2, · · · ,wT) with wt ∈S ⊂Rd that minimizes the
total errors

∑T
t=1 ft(wt). Due to causality, for every t, the algorithm

computes wt based only on (f1, f2, · · · , ft−1). We seek an algorithm A that
minimize the regret defined by

RegretT(A ) =
T∑

t=1
ft(wt)−min

w∈S

T∑
t=1

ft(w)

We consider situations where
the input functions (f1, f2, · · · , ft−1) are L-Lipschitz continuous
the hypothesis space S is bounded w.r.t.l2-norm. Under these
restrictions, the OCO problem can be solved by the online gradient
descent (OGD) algorithm [W. Davidon’76].

Algorithm 1 (A Privacy-preserving OGD)

Encryption layer:
Receive wt from the learner
Pick a sub-gradient zt ∈ ∂ft(wt)
Output z̃t = zt +vt to the learner, where vt ∼N (0,σ2I) i.i.d.

Learner:
Receive z̃t from the encryption layer
Update θt+1 = θt − z̃t, (initialize θ1 = 0)
Predict wt+1 = argminw∈S

∥∥w−ηθt+1
∥∥
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Theorem 1 (Privacy Guarantee)
The noise adding mechanism in Algorithm 1 is C-mutual-information
private. i.e., I(fk; z̃k) < C for every k, where C = d

2 log(1+ L2

dσ2)

Theorem 2 (Regret Guarantee)
The Regret of Algorithm 1 is sub-linear to T . Specifically,
Regret(A1) ≤ B2

2η+
η
2T(L2+dσ2). In particular, by setting

η= B/
√

(L2+dσ2)T we obtain the bound Regret(A1) ≤ B
√

(L2+dσ2)T .

Numerical Results (Full Information)

0 200 400 600 800 1000

Time Horizon T

0

5

10

15

20

25

30

R
eg
re
t

Non-private

Private

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
I(ft; z̃t)

0

5

10

15

20

25

R
eg
re
t
B
o
u
n
d
(T

=
2
5
)

Non-private
OGD

L = 1

L = 2

Extension: Bandit Setting OCO
Bandit setting [A. Flaxman’05]: for every t, the algorithm computes wt

based only on (f1(w1), f2(w2), · · · , ft−1(wt−1)). i.e. The learner only knows
the value of the loss function but he doesn’t know the value of the loss
function at other points.
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Algorithm 2 (A Privacy-preserving OGD - Bandit)

Encryption layer:
Receive wt from the learner
Pick et ∼ Usp, where Usp is the uniform distribution over the unit

sphere {u : ‖u‖2
2 = 1}.

Send wt +δet to the user
Receive cost value φt = ft(wt +δet) from the user
zt = d

δφtet

Output z̃t = zt +vt to the learner, where vt ∼N (0,σ2I) i.i.d.
Learner:

Receive z̃t from the encryption layer
Update θt+1 = θt − z̃t, (initialize θ1 = 0)
Predict wt+1 = argminw∈S

∥∥w−ηθt+1
∥∥
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Theorem 3 (Privacy Guarantee - Bandit Setting)
Let F = maxu∈S ,t≥1 ft(u). If F <∞, the proposed private OGD algorithm is
C-mutual information private. i.e., I(ft; z̃t) < C for every t, where

C = d
2 log(1+ d(F/δ+L)2

σ2 )

Theorem 4 (Regret Guarantee - Bandit Setting)
The Regret of the proposed private OGD algorithm is sub-linear to T .
Specifically,

Regret(A2) ≤ B2

2η
+η

2
T(d2(F/η+L)2+dσ2)+3TLδ

In particular, if we set η∼ T−3/4 and δ∼ T−1/4, the regret is bounded by
O(T 3/4).

Conclusion
Our private preserving OGD provides a conservative way to protect
users’ data.
The user’s leaked information is bounded by the channel capacity of
Gaussian channel while the regret of the learning system is sub-linear
to the time horizon T .
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