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ABSTRACT

Backpropagation (BP) has been a successful optimization
technique for deep learning models. However, its limitations,
such as backward- and update-locking, and its biological im-
plausibility, hinder the concurrent updating of layers and do
not mimic the local learning processes observed in the human
brain. To address these issues, recent research has suggested
using local error signals to asynchronously train network
blocks. However, this approach often involves extensive
trial-and-error iterations to determine the best configuration
for local training. This includes decisions on how to decou-
ple network blocks and which auxiliary networks to use for
each block. In our work, we introduce a novel BP-free ap-
proach: a block-wise BP-free (BWBPF) neural network that
leverages local error signals to optimize distinct sub-neural
networks separately, where the global loss is only responsible
for updating the output layer. The local error signals used in
the BP-free model can be computed in parallel, enabling a
potential speed-up in the weight update process through par-
allel implementation. Our experimental results consistently
show that this approach can identify transferable decoupled
architectures for VGG and ResNet variations, outperforming
models trained with end-to-end backpropagation and other
state-of-the-art block-wise learning techniques on datasets
such as CIFAR-10 and Tiny-ImageNet. The code is released
at https://github.com/Belis0811/BWBPF.

Index Terms— Local loss, block-wise learning, com-
puter vision

1. INTRODUCTION

Based on the remarkable success of gradient descent training
techniques [1], the Backpropagation (BP) has emerged as a
widely adopted core learning algorithm in most deep learning
networks. This algorithm efficiently calculates weight param-
eter gradients by reverse-propagating the error signal from the
loss function to each layer. However, BP faces certain limi-
tations, characterized by update locking and backward lock-
ing [2], where update locking necessitates the completion of
a forward pass before any weight updates can occur, while
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backward locking requires gradient computation in upper lay-
ers to precede that in lower layers.

An intriguing category of alternative proposals is grounded
in contrastive learning within energy-based models [3, 4].
Rather than propagating errors layer by layer through ran-
dom feedback connections, Nøkland [5] and Neftci et al.’s
networks [6] employ a fixed random projection of the top
layer error as the error signal in deep layers, which enables
a unified error signal shared across all layers. However, this
approach results in delays and high memory demands dur-
ing weight updates. A complete forward pass through the
network is necessary before the error signal becomes acces-
sible, leading to deep layers maintaining states throughout,
consuming substantial computational resources.

To address these challenges, researchers have introduced
a solution in the form of greedy block-wise learning ap-
proaches [7,8]. These methods partition the network into dis-
tinct blocks, each comprising consecutive layers connected to
an auxiliary network. The auxiliary network computes local
loss, optimizing block weights by propagating error signals.
This scheme enables independent parameter updates in indi-
vidual blocks during concurrent forward pass computations.
Recently, Gunhee et al. [9] proposed SEDONA, an auto-
matic search method for efficient exploration of decoupled
neural architectures using greedy block-wise learning. SE-
DONA improves validation loss optimization by organizing
layers into blocks and selecting suitable auxiliary networks.
However, in deeper networks with more blocks, SEDONA’s
classification performance shows marginal improvement or
remains similar to standard BP method.

To fully utilize the potential of the block-wise local loss
approach, we present a novel BP-free learning approach
based on the block-wise BP-free (BWBPF) learning method.
Leveraging the original architecture’s blocks as a foundation,
we partition the network into several subnetworks connected
via our auxiliary network. These subnetworks are connected
to independent dense layers, which are responsible for cal-
culating local losses. These local loss terms are then utilized
to update the parameters of each individual block. Through
experiments on two image classification datasets, CIFAR-10
and Tiny-ImageNet, our method outperforms the original
BP algorithm in ResNet [10] and VGG [11] networks. Fur-



thermore, we compare our results with three greedy learn-
ing algorithms, DGL [7], PredSim [12], and the SEDONA
method [9]. Our network consistently outperforms networks
trained using those algorithms. Notably, unlike most of the
aforementioned methods, our approach doesn’t necessitate
additional memory blocks to generate an error signal.

2. METHOD

The BWBPF learning approach draws inspiration from bi-
ological networks such as the human brain, where synaptic
weight updates can occur through local learning, independent
of the activities of neurons in other brain regions [13–17].
Partly for this reason, local learning has been identified as an
effective means to reduce memory usage during training and
to facilitate parallelism in deep learning architectures.

2.1. Block-wising learning in convolutional blocks

In the context of a convolutional neural network (CNN) com-
prised of multiple layers, the concept of ”blocks” emerges as
a convenient way to organize and group one or more con-
volutional layers together. To simplify this concept further,
when dealing with a neural network featuring multiple con-
volutional layers, we can naturally group a set of these lay-
ers together into what we refer to as a ”block.” This group-
ing approach is widely employed in well-known architectures
like VGG [11], ResNet [10], and Inception [18], where these
blocks play a pivotal role in shaping the network’s structure
and behavior.

Following each convolutional block in our model, we in-
corporate two essential components: a global average pool-
ing layer and a dense layer responsible for computing local
loss. In this work, we exclusively employ cross-entropy loss
functions. These auxiliary components within the network,
as depicted in Fig. 1 (b), hold the crucial responsibility of up-
dating the layer weights within each block. Importantly, they
carry out this weight-updating task while preserving the over-
all structural integrity of the network, ensuring that the under-
lying architecture remains intact. This architectural choice
enables our network to consistently deliver superior perfor-
mance when compared to networks trained using alternative
algorithms. It is noteworthy that our approach achieves this
performance without the need for additional memory blocks
to generate an error signal, a departure from many of the ex-
isting methodologies in the field.

2.2. BP-free
To overcome the drawbacks of BP, particularly the issue of
backward locking, we propose the BWBPF learning algo-
rithm which eliminates BP for the global prediction loss and
instead computes the local prediction loss. This modification
implies that the global prediction loss is solely responsible for
optimizing the output layer, denoted asLo

g (where o stands for
output). In simpler terms, this prediction loss acts as a local
loss function exclusively for updating the weights of the out-
put layer (as depicted in Fig. 1 (c)). The total loss function for

the BP-free algorithm is defined as follows:

L = �1Lo
g + �2

K∑
l=1

Lδ
l (1)

where Lδ
l represents the local loss, with l denoting the

number of blocks. The local loss is computed between the
true label and the local output vector (~yδ). By removing
the BP of the global prediction loss to the hidden layers,
the weight updates for the convolutional layers in our model
are exclusively influenced by the local prediction loss, as
illustrated in Figure 1 (c).

To enable layers in convolutional blocks to generate valid
predictions, we apply the same activation function used in
the output layer for each block. For instance, in the case
of a CNN designed for N -class classification, we typically
include N output neurons in the output layer and apply the
softmax function. In this work, we equally group the layers
into K different blocks and embed our approach on VGG-
19, ResNet50, ResNet101 and ResNet152 for validating our
model’s performance by spilt the original architecture into 4,
8, 12, and 16 blocks. We conducted model training for 200
epochs with CIFAR-10 and 300 epochs with Tiny-ImageNet,
using a batch size of 32. We initially set the learning rate
to 0.1 and gradually reduced it to 0.0001. For the ResNet-
50/101/152 and VGG-19 architectures, we applied a weight
decay of 0.0001 and a momentum of 0.9. Additionally, we
utilized weight initialization without employing dropout.

3. EXPERIMENTS

To validate our approach and make a meaningful comparison
with state-of-the-art block-wise learning methods, we employ
our approach and baseline methods on both VGG-19 [11]
and ResNet-50/101/152 [10] architectures. To ensure a fair
comparison, all methods are trained and tested on identical
datasets, which include CIFAR-10 and Tiny ImageNet. Fur-
thermore, we maintain uniformity in the training strategy and
hyperparameter settings across all approaches.

Table 1: Error rates(%) on CIFAR-10 (a) and Tiny-ImageNet
(b) with different methods with 4 outputs

Architecture ∗BP ∗PredSim ∗DGL ∗SEDONA BWBPF
VGG-19 12.31 13.87 12.19 11.58 6.52
ResNet50 7.99 8.93 8.27 7.53 4.85

ResNet101 7.14 7.93 8.30 6.59 4.53
ResNet152 6.35 7.41 6.39 6.13 4.48

∗Results are from SEDONA.

(a) CIFAR-10

Architecture ∗BP ∗PredSim ∗DGL ∗SEDONA BWBPF
VGG-19 47.11 55.30 48.70 43.44 40.09
ResNet50 46.54 55.22 46.04 45.60 35.83

ResNet101 44.50 46.80 46.20 40.88 35.28
ResNet152 39.18 48.24 42.36 35.90 35.01

∗Results are from SEDONA.

(b) Tiny-ImageNet
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Fig. 1: Weight updates of BWBPF. a. BP in classic neural network training. Global prediction loss is back-propagated through
layers. b. The dense layer is attached below the subnetwork for computing the local loss. c. BP-free weight update of a block
of layers.

(a) ResNet101

(b) ResNet152

Fig. 2: Classification error (1-accuracy) curves of (a) ResNet-
101 and (b) -152 with increasing K on CIFAR-10 and Tiny-
ImageNet.

3.1. Datasets
The CIFAR-10 is obtained from the TensorFlow datasets [19].
CIFAR-10 [20] consists of 60,000 images, each of size 32 �
32. Tiny ImageNet [21] consists of a dataset of 100; 000 im-
ages distributed across 200 classes, with 500 images per class
for training, and an additional set of 10; 000 images for test-
ing. All images in the dataset are resized to 64� 64 pixels.

3.2. Baselines models
In this paper, we choose three state-of-the-art block-wise
learning algorithms which use BP-free optimization, which
are DGL [7], PredSim [12], and SEDONA [9]: (1) DGL uses
greedy block-wise learning method to train their network
by dividing it into K subnetworks. The auxiliary network
they use denoted as MLP-SR-aux, which consists of one
pooling layer with three point-wise convolutions followed
by an average pooling layer and a 3-layer MLP; (2) Pred-
Sim combines two local losses, similarity matching loss and
cross-entropy loss, which require two different auxiliary net-
works, an average pooling layer with fully connected layer
and a convolutional layer, respectively; (3) SEDONA gener-
ates four auxiliary candidates, encompassing a sequence of
components: a point-wise convolutional layer, a depth-wise
convolutional layer, a specific number of inverted residual
blocks, and ultimately concluding with a point-wise convolu-
tional layer. Subsequently, each candidate undergoes further
processing, involving the application of an average pooling
layer and the integration of a fully connected layer.

3.3. Results on CIFAR-10 and Tiny-ImageNet
Our primary classification error rates (1-accuracy) for both
CIFAR-10 and Tiny-ImageNet datasets are summarized in
Table 1 (BP results are also shown in Table 1 for reference).
For the CIFAR-10 dataset, noted that two state-of-the-art



block-wise learning methods, PredSim and DGL, almost
underperform traditional BP in all cases. In contrast, the
network trained with the SEDONA method shows a bet-
ter performance than BP. However, our model has a more
significant improvement than the SEDONA method. Our
image classification accuracy is about 5% higher on VGG-19
than on SEDONA, and about 2% higher on all three ResNet
networks.

(a) ResNet101

(b) ResNet152

Fig. 3: Classification accuracy curves of (a) ResNet-101 and
(b) -152 with increasing K and end-to-end BP on CIFAR-10
and Tiny-ImageNet.

Similarly, our method not only outperforms BP but also
yields better performances to SEDONA on Tiny-ImageNet.
As indicated in Table 1b, our approach’s accuracy even sur-
passed SEDONA by over 10% on ResNet50. For the re-
maining ResNet architectures, the optimization gain from
our method gradually diminished as the model complexity
increased with additional layers. Nevertheless, our method
consistently outperforms SEDONA across all configurations.
We achieved a 5% improvement in accuracy compared to
SEDONA with ResNet101, and we also observed a slight

performance boost over SEDONA with ResNet152. These
results affirm that our method presents a superior option for
both large and small datasets compared to conventional BP
and other block-wise learning models.

To investigate the impact of the number of blocks (K)
on model performance, Figure 2 presents results from exper-
iments conducted using four different learning approaches:
DGL, PredSim, SEDONA, and our BWBPF learning, each
with varying values of K. Upon analyzing the baseline meth-
ods, it is evident that both DGL and PredSim consistently un-
derperform compared to the standard BP method across all
values of K, particularly for K � 12. On the other hand, SE-
DONA exhibits superior performance to BP, particularly for
lower values ofK. However, asK increases, SEDONA’s per-
formance becomes comparable to that of BP, especially when
validating on CIFAR-10 and Tiny-ImageNet datasets using
the ResNet 101 model. In our model, we observe that in-
creasing the value of K leads to an increase in the error rate.
Nevertheless, our model consistently outperforms the classic
BP algorithm and all the baseline models in terms of overall
model performance, even as K increases.

4. CONCLUSION

To address the challenges posed by standard BP, we intro-
duce a novel approach called the BWBPF learning algorithm,
which operates without relying on BP. BWBPF, which di-
vides the network into subnetworks connected to auxiliary
networks, enables the computation of local losses for individ-
ual blocks, resulting in enhanced convergence, reduced gradi-
ent issues, better generalization, and increased model robust-
ness. Through comprehensive experiments on image classi-
fication tasks using popular architectures such as ResNet and
VGG, we showcase the superiority of our approach over tradi-
tional BP and existing state-of-the-art greedy learning meth-
ods. BWBPF’s adaptability to various network architectures
and datasets indicates its potential for broader applications in
the field of deep learning. As we continue to explore alterna-
tive learning mechanisms inspired by biology, the proposed
approach offers a promising avenue for improving the effi-
ciency and effectiveness of training CNN architectures.

5. ACKNOWLEDGEMENT

The authors acknowledge the support by the National Science
Foundation (NSF) under the Career Award CPS-1453860,
CCF-1837131, MCB-1936775, CNS-1932620 and award
No. 2243104, Center for Complex Particle Systems (COM-
PASS), U.S. Army Research Office (ARO) under Grant No.
W911NF-23-1-0111, DARPA Young Faculty Award and
DARPA Director Award under Grant Number N66001-17-1-
4044, and a Northrop Grumman grant. The views, opinions,
and/or findings in this article are those of the authors and
should not be interpreted as official views or policies of the
Department of Defense or the National Science Foundation.


