Depth from Spectral Defocus Blur
Shin Ishihara1,2, Antonin Sulc1,3, Imari Sato1
1-National Institute of Informatics, 2-Tokyo Institute of Technology, 3-University of Konstanz

Goal

Our Goal: Simultaneous acquisition of clear multispectral image and scene depth from a blurred single multispectral image

- Spectral Images (450-700nm)

500nm Image 650nm Image

- Different wavelength images have different focal positions

Depth Clues: Conventional depth-dependent blur and wavelength-dependent blur (known as chromatic aberration)

Imaging Model

Captured Image \(\rightarrow \) Gaussian Blur \(\rightarrow \) Texture (Pinhole)

\[I(x, y, \lambda) = k(x, y, \sigma(\lambda)) \ast P(x, y, \lambda) \]

- Both \(k \) and \(P \) are dependent on the wavelength \(\lambda \)

\[\text{Depth} = \frac{\alpha(\lambda) \Delta I}{\beta(\lambda) \Delta I - \partial_\lambda I} \]

- \(x, y \): spatial coordinates
- \(\alpha, \beta \): lens parameters
- Depth \(Z \) can be derived by two types of derivative of captured image [1]; one is spatial (\(\Delta I \)) and the other is spectral (\(\partial_\lambda I \))

Method

Theory: Depth \(Z \) is actually derived as a closed form by the lens rule and the two types of derivatives of Gaussian blur

- Lens rule
 \[\sigma(\lambda) = \left(\frac{1}{Z} - \frac{1}{f(\lambda)} \right) \mu_s + 1 \]

- \(\gamma \): RMS width of Gaussian
- \(f \): focal length of the lens
- \(\mu_s \): distance from the lens to the sensor

Computation: \(\Delta I \) is obtained as laplacian filter. \(\partial_\lambda I \) is approximated as the change of blurriness \(B = I(\lambda) - I_{\text{focused}}(\lambda) \).

\[\partial_\lambda I = \partial_\lambda k \ast P = \left(k(\lambda_i) - k(\lambda_j) \right) \ast P \approx B(\lambda_i) - B(\lambda_j) \]

- Focal connected image are also utilized to generate clear multispectral image

Results

Scene Input Depth Original-Sharpen Comparison

- 450nm
- 650nm

Website of our laboratory

[1]: Q.Guo, et al. ICCV’17, pp.966-974
[2]: H.Hariharan, et al. CVPR’07, pp.1-6