Efficient Nonlinear Acoustic Echo Cancellation by Dual-stage Multi-channel Kalman Filtering

Matthias Schrammen, Stefan Kühl, Shmulik Markovich-Golan, Peter Jax

Introduction

1. Introduction
 - Application: Single-channel Acoustic Echo Cancellation
 - Example: hands-free call with AEC in mobile phone
 - Problem: Linear AEC cannot compensate nonlinear part of echo
 - Combination of high SPL playback with small and cheap speakers leads to nonlinear distortion
 - Goal: Use Nonlinear Acoustic Echo Cancellation

2. Acquisition of Realistic Echo Signals
 - Evaluation based on simulated nonlinear echo signal not meaningful
 - Construction of realistic smartphone mockup comprising Class D amplifier, smartphone loudspeaker and digital MEMS microphone
 - Simultaneous playback of far-end signal and recording of microphone signal in studio booth (T_{0} = 0.12 s)
 - Scenarios: Mockup on desk (a) and mockup on microphone stand (b)

3. Underlying Digital System Model
 - Odd order power series T{\cdot} of order P with weights w_{k,i}(t) models nonlinear amplifier and loudspeaker with memory of length N_{li}:
 \[T(x{i}) = \sum_{i=0}^{P} w_{ji}(i) \ast x(2i+1) \]
 - Linear filter h_{li}(i) of length N_{li} >> N_{li} models transmission from loudspeaker to microphone:
 \[y{i}(t) = h_{li}(i) \ast T(x{i}) \]

4. Dual-stage Multi-channel Kalman Filter
 - Cascaded structure mimics underlying system model
 - Filtering and adaptation is done in short-term Fourier domain
 - Segmentation and reconstruction with overlap-save (not shown)
 - Stage 1: Multi-channel Kalman filter (MCK) [1, 2]
 - Filtered-x multi-channel nonlinear reference \(\hat{X}_{\text{FMC}}(k) \)
 - Complexity reduction by reduced frequency resolution (\(\downarrow D \)), see
 - Stage 2: Single-channel Kalman filter

5. Evaluation on Measured Echo Signals
 - Full-MCK [1]: Reference system with one multi-channel stage
 - Abrupt change of scenario simulated by switching from desk to microphone stand at \(t = 10.5 \) s
 - Proposed DualStage-MCK (\(D = 1 \)) with memory (\(N_{li} = 15 \)) outperforms DualStage-MCK without memory (\(N_{li} = 1 \)) and Full-MCK

6. Complexity Reduction
 - Nonlinear memory is typically short, see
 - \(\hat{w}_{lip}(k) \) are short \(\rightarrow W_{pi}(k) \) are smooth
 - DFT of size \(N \) can be reduced to \(M = M/D \)
 \[\hat{X}_{\text{FMC}}(\hat{\mu}) = \hat{X}_{\text{FMC}}(\hat{\mu}D) \text{ for } \hat{\mu} = 1, 2, \ldots, M/(2D) - 1 \]
 - Constraining application of complex weights can be omitted [3]

7. Conclusion
 - Novel nonlinear echo canceller with dual-stage structure
 - Speeds up convergence due to short filters with respect to Full-MCK
 - Improves ERLE by modelling a nonlinearity with memory
 - Allows for complexity reduction by reduced frequency resolution
 - Significant improvement of ERLE at only 69% higher complexity than linear only AEC
 - Attractive for real-time speech communication with mobile devices

References