POSITNN: TRAINING DEEP NEURAL NETWORKS WITH MIXED LOW-PRECISION POSIT

Goncalo Raposo, Pedro Tomas, Nuno Roma

@ iBesc id

lisboa

INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa, Portugal

ABSTRACT DEEP LEARNING POSIT FRAMEWORK EXPERIMENTAL EVALUATION

Low-precision formats have proven to be an efficient way
to reduce not only the memory footprint but also the
hardware resources and power consumption of deep
learning computations. Under this premise, the posit

Tab. Accuracy of CNNs trained and tested with posits (accumulating
with quires). Everything with 8-bit posit except optimizer (O) and loss (L).
Compared against 32-bit float.

* New open source framework for neural networks

* Training and inference using posits of any precision

numerical format appears to be a highly viable substitute * Support for mixed precision configurations MNIST — Fashion MNIST CIFAR-10 CIFAR-100
for the IEEE floating-point, but its application to neural - Implemented in C++ and with a similar API to PyTorch Format (LeNet-5) ~ (LeNet-5) (CifarNet) (CifarNet)
networks training still requires further research. Some Accuracy Accuracy fop-1 ~ Top-3 Top-1 Top-5
preliminary results have shown that 8-bit (and even Training Float (FP32) 99.217% 90.287% 70.79% 92.647% 36.35% 66.92%
smaller) posits may be used for inference and 16-bit for Inference ~ Posit8 016-L16, 99.19% 90.46% 71.30% 92.65% 35.41% 67.00%
training, while maintaining the model accuracy. The A / Forward A ZOS!S 812-—1? ggég? 88-(1)471? gégggo 8?22? gggg? ggg;?
: IR F : ataset >) . utout - oSl -L 2070 U770 2070 2270 .50 70 A (70
presented resegrch aims to evaluate the f.eaS|b|I|ty.to train ' / posit8 |Propagation| posit8 P ' Posit8 012-_102 99.17% 90.13% 68.41% 91.41% 25.37% 56.21%
deep convolutional neural networks using posits. For . |
such purpose, a software framework was developed to I D OSlth
use simulated posits and quires in end-to-end training 5 y grmmaraneenas 5
and inference. This implementation allows using any bit Optimizer [<— 7/I\/Iodel/ Loss | Target
size, configuration, and even mixed precision, suitable for positlef /L | £ CONCLUSION
different precision requirements in various stages. T osit 8 posit 8 19
The obtained results suggest that 8-bit posits can P Y postt | | | | |
substitute 32-bit floats during training with no negative _ posit8| Backward * 8-bit posits can replace 32-bit floats in a mixed
impact on the resulting loss and accuracy. Gradients < Propagation | precision configuration for DNN training (accuracy
] degradation < 1%)
Index Terms — Posit numerical format, low-precision i o | | | o
arithmetic, deep neural networks, training, INfErENCE * Optimizer and loss function require higher precision
Fig. Block diagram of a possible mixed precision configuration for _ _
DNN training and inference. * 80 — 95% of the computation were performed with
8-bit posits (~ 4x less memor
POSIT NUMBERING SYSTEM h dients d h del P (2
) ° ﬁ.r adien (Sj ?creel\:)sle as e model converges — * Future work shall evaluate these results In a
. vanisiing gradient probiem - hardware implementation of a posit unit, namely, its
> ° IﬂSL{ﬁlClen.t .dynamIC range. and resolution Wlth Nnarrow critical path (t|me) and energy Consumption
posit precisions for the optimizer and loss function (ongoing)
1: Tab. Supported functionalities of PositNN.
" " " e "’ ; i Posit Tensor Layers ACt'VQtlon Los:s Optimizer
Functions Functions
Fig. Distributions of a 8-bit posit (blue) and a 8-bit floating-point (orange). « Multidimensional « Linear: e Rel U e Mean . SGD-
arrays with posits Equivalent to *Sigmoid Squared Momentum REACH OUT
Posit Sian Reqime Exoonent Fraction * Basic arithmetic matrices operations * TanH Error and
. J J PONET . operations * Convolutional: (MSE) Learning E- il- | Ih t : lisb t
(n bits) (1 bit) (variable) ({0..es} bits) (remaining) . Accumulate erforms a e Cross Rate (LR) mail: goncalo.cascalho.raposo@tecnico.ulisboa.p
: . L . . using quires convolution for a Entropy scheduler _ _ _ ,
Fig. Format encoding of a posit with n bits and es exponent size. .Save and loadto 3D input (e.g. GitHub: https://github.com/hpc-ulisboa/posit-neuralnet
a binary file image)
sign 26 s o exponent . * Convert from/to *Pooling operations
D= (— 1) X) X) X (1+ fractlon) PyTorch tensor * Dropout

mailto:goncalo.cascalho.raposo@tecnico.ulisboa.pt
https://github.com/hpc-ulisboa/posit-neuralnet

