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METHODS
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Fig.1. Comparison of feature
emphasis.

Landmarks with medium
or small sizes are difficult to be

recognized.

Concurrent methods [1-3]
only use features from one

semantic level.

Exploiting the

multiscale features for hierarchical
attention to depict image
representation of landmarks with
different scales and distance, as

shown in Fig. 1.

network.

® A hierarchical attention fusion

® A self-supervised loss function.
® A new state-of-the-art on several
geo-localization benchmarks.
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Fig.2. The architecture of the proposed method
As Fig. 2 shows, we perform the attention

fusion over the obtained features to produce strong image
representation for landmarks with different scales.

For a pair of image (I, 1), we include a detection

term to compute their differences:
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Thus, the triple ranking loss is defined as:

RESULTS

L(I,, I}, 1) = max(M + AD(1,, I} ) — AD(1,, I; ), 0)
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full Crop full Crop orig rot
67.81 69.52 | 75.10 | 78.29 3482 | 88.41
63.95 65.52 72.88 75.835 83.19 87.30
63.09 65.33 72.53 75.67 82.67 86.83
63.14 65.50 | 72.83 75.10 82.92 86.90
Tablel: Results for compact image representations (256-D).
Pitts 250k-test | TokyoTM-val Tokyo 24/7 St-0
0.1 0.3 0.2 0.1
0.4 0.3 0.3 0.1
0.5 0.4 0.5 0.8

Table2: Best adaptive weights which produces the best recall@5 for each benchmarks.
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Fig. 3: Comparison of recalls at N top retrievals with the state-of-the-arts methods.

We compare our method with the state-of-the-art methods, NetLAVD [1], CRN [2], and SuperPoint [3].

The results are displayed in Table 1. Our results set the state-of-the-art for compact image representations (256-D) on all three
benchmarks. On all metrics, our margins consistently exceed the mAP of other methods by 1 to 5%.

We report the Precision-Recall plot for each method in Fig. 3. Our method outperforms other methods under different recall@n
thresholds on all benchmarks.

CONCLUSION

network (CNN) to perform hierarchical attention fusion for image representations.

for geo-localization.
Extracting the multi-scale feature maps from a convolutional neural

Since the hierarchical features are scale-sensitive, our method is
robust to landmarks with different scales and distances.
indicate that our method is competitive with the latest

state-of-the-art approaches on the image retrieval benchmarks and the large-
scale geo-localization benchmarks.
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