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PROBLEM

Localization of exact positions of the funda-
mental heart sounds (FHS) is an essential step to-
wards automatic analysis of heart sound phono-
cardiogram (PCG) recordings.

This is a difficult problem due to two aspects.

1. Noise: PCG segmentation is a difficult task
in clinical environments when recordings
are corrupted by in-band and background
noise.

. Regimes: A constrained non-ergodic
Markov chain with limited number of
states that represent the heart sound
components.

LetYr, t=1[1,2,...,T]and k = [1,..., K], where
K = 4 corresponding to four heart sound compo-
nents. consider AR (1)

(1)

Parameters Initialization:
The Ordinary least squares (OLS) method was
used to estimate ¢,,,such that

o= (XX')TH(X'Y) (2)
where, ¢ is 1 x P vector of AR coefficients, X is
P x T contains the P lag observations of Y.

State-Space Model (SSM):
Equation (1) can be written as,

Et N N(O,R)
Wy ~ N(()?Q)

yvi = Uxy + &4,
(3)

Xt4+1 = Axy + Wy,
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HEART SOUND SEGMENTATION USING SWITCHING

LINEARDYNAMICAL MODELS

CONTRIBUTIONS

We develop a general framework for seg-
menting the fundamental components of heart
sound data based on the SLDS. More precisely,
we formulate a piece-wise stationary autoregres-
sive (AR) process into a switching linear state-
space representation to identity the change points
in the auto-correlation structure to achieve seg-
mentation of heart sound signals.

We adopt a four-states Markov-switching AR
(MSAR) model to capture dynamic changes (car-
diac events) between four important heart sound
components.

We evaluate our proposed approach on a

large heart sound dataset provided by Physionet/
Challenge 2016.

The switching AR process (1) is defined by
P
yt = Z o yi_p + 5 (4)
p=1
The switching SSM model is defined as
Yt p— CXt _I_ €§St)

(St) )
Xt '{" ‘V\ft;

X1 = ALY

St indexes the switching SSM parameters
A(St), g(St), and WgSt).

{2}77P*! is the lagged state dynamics.

(1) and w!”*) are the observation and state

noise, which assumed to follow Gaussian,
er ~ (0, R and w, ~ (0, Q15)).

The matrix At consists of the state-
specific AR coetficients.

Q(St) is a P x P sparse matrix with )1; is
the state covariance noise.

The switching model parameters are de-
noted by © = {4, Q, R}.
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Fig.1 illustrates the proposed framework for
heart sound segmentation based on SLDS.

STATE ESTIMATION

Objective:

Given a sequence of observations {Y }1, the prob-
lem of inference in SLDS models is to estimate
the posterior probabilities Pr(S; = j[{Y}{) of
the hidden state variables S;.

Switching Kalman Filter (SKF):

For each state i,7 = [1,...,K]| at time t =
1,...,T], Kalman Filter will iteratively compute
the mean and covariance of the new predicted

state, x;’ and P}’ respectively.

M} = P(S; = jl{v}T) (6)

where M (6) is the K x T probability that at each
time ¢t € [1,2,...,T], the observation y,; belongs

to state j subject to 3" M/ = 1.

Switching Kalman Smoother (SKS):

The Kalman backward smoothing recursions use
the filtered state probability P(S;|{Y }}) and the
filtered densities {x’}{, {P’}{ to calculate the
posterior distributions P(x;|{Y}{) conditioned
to all the observations {Y'}{ starting from last
time step 1T’ [2].

Duration-Dependent Viterbi Algorithm:

The modified Viterbi algorithm was proposed by
[1]. Which decodes the most likely sequence
of states, given the SKF posterior probabilities

M. The duration-dependent Viterbi algorithms
forces the state to remain in the correct sequence
(the fundamental heart sound components).
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Percentage histograms of non-split dataset
segmentation. (a) SKF; (b) SKS; (c) SKF-Viterbi.
(d) Distribution of accuracies for ditferent seg-
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mentation methods.
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Percentage histograms of test dataset segmen-
tation. (a) SKF; (b) SKS; (c¢) SKF-Viterbi. (d) Dis-
tribution of accuracies for different segmentation
methods.

e The segmentatin accuracies of unseen
dataset dropped slightly in both SKF and
SKS, while the Viterbi maintained the same
performance 84.2%.

e The fusion of SKF and duration-dependent
Viterbi based heart sound data labeling re-

sults in improving the average performance
in SKF form 71% to 84.2%.

e The study presented here investigated new
approaches for the segmentation of funda-
mental heart sounds from a single channel
PCG recording without using any reference
signals




