HEART SOUND SEGMENTATION USING SWITCHING LINEAR DYNAMICAL MODELS

Fuad Noman, Shi-Hussain Salleh*, Chee-Ming Ting and Hadri Hussain

PROBLEM

Localization of exact positions of the fundamental heart sounds (FHS) is an essential step towards automatic analysis of heart sound phonocardiogram (PCG) recordings. This is a difficult problem due to two aspects.

1. Noise: PCG segmentation is a difficult task in clinical environments when recordings are corrupted by in-band and background noise.
2. Regimes: A constrained non-ergodic Markov chain with limited number of states that represent the heart sound components.

CONTRIBUTIONS

We develop a general framework for segmenting the fundamental components of heart sound data based on the SLDS. More precisely, we formulate a piece-wise stationary autoregressive (AR) process into a switching linear state-space representation to identify the change points in the auto-correlation structure to achieve segmentation of heart sound signals.

We adopt a four-states Markov-switching AR (MSAR) model to capture dynamic changes (cardiac events) between four important heart sound components.

We evaluate our proposed approach on a large heart sound dataset provided by Physionet/Challenge 2016.

METHOD

Let \(Y^k_t, t = [1, 2, \ldots, T] \) and \(k = [1, \ldots, K] \), where \(K = 4 \) corresponding to four heart sound components. consider AR (1)

\[
Y^k_t = \sum_{p=1}^{P} \varphi_p X^k_{t-p} + \varepsilon_t, \quad \varepsilon_t \sim N(0, R)
\]

Parameters Initialization: The Ordinary least squares (OLS) method was used to estimate \(\varphi \), such that

\[
\hat{\varphi} = (XX')^{-1}(XY)
\]

where, \(\varphi \) is a \(1 \times P \) vector of AR coefficients, \(X \) is \(P \times T \) contains the \(P \) lag observations of \(Y \).

State-Space Model (SSM): Equation (1) can be written as,

\[
y_t = Cx_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, R)
\]

\[
x_{t+1} = A(S_t)x_t + w_t, \quad w_t \sim N(0, Q)
\]

The switching AR process (1) is defined by

\[
y_t = \sum_{p=1}^{P} \varphi_p^S y_{t-p}^S + \varepsilon_t^S
\]

The switching SSM model is defined as

\[
x_t^S = Cx_t^S + \varepsilon_t^S
\]

\[
x_{t+1}^S = A(S_t^S)x_t^S + w_t^S
\]

- \(S_t \) indexes the switching SSM parameters \(A(S_t), \varepsilon_t^S \) and \(w_t^S \).
- \(\{x_t^S\}_{1}^{T} \) is the lagged state dynamics.
- \(\varepsilon_t^S \) and \(w_t^S \) are the observation and state noise, which assumed to follow Gaussian, \(\varepsilon_t \sim N(0, R(S_t)) \) and \(w_t \sim N(0, Q(S_t)) \).
- The matrix \(A(S_t) \) consists of the state-specific AR coefficients.
- \(Q(S_t) \) is a \(P \times P \) sparse matrix with \(Q_{tt} \) is the state covariance noise.
- The switching model parameters are denoted by \(\Theta = \{A, Q, R\} \).

STATE ESTIMATION

Objective:

Given a sequence of observations \(\{Y_t\}_1^T \), the problem of inference in SLDS models is to estimate the posterior probabilities \(Pr(S_t = j|\{Y_t\}_1^T) \) of the hidden state variables \(S_t \).

Switching Kalman Filter (SKF):

For each state \(i, j = [1, \ldots, K] \) at time \(t = [1, \ldots, T] \), Kalman Filter will iteratively compute the mean and covariance of the new predicted state, \(\hat{x}_t^j \) and \(P_t^j \) respectively.

\[
M_t^j = P(S_t = j|\{Y_t\}_1^T)
\]

where \(M_t^j \) is the \(K \times T \) probability that at each time \(t \in [1, 2, \ldots, T] \), the observation \(y_t \) belongs to state \(j \) subject to \(\sum M_t^j = 1 \).

Switching Kalman Smoother (SKS):

The Kalman backward smoothing recursions use the filtered state probability \(P(S_t|\{Y_t\}_1^T) \) and the filtered densities \(\{x_t^S|\{Y_t\}_1^T\} \) to calculate the posterior distributions \(P(s_t|\{Y_t\}_1^T) \) conditioned to all the observations \(\{Y_t\}_1^T \) starting from last time step \(T \).

Duration-Dependent Viterbi Algorithm:

The modified Viterbi algorithm was proposed by [1]. Which decodes the most likely sequence of states, given the SKF posterior probabilities \(M_t \). The duration-dependent Viterbi algorithms forces the state to remain in the correct sequence (the fundamental heart sound components).

RESULTS & CONCLUSIONS

Percentage histograms of non-split dataset segmentation. (a) SKF; (b) SKS; (c) SKF-Viterbi. (d) Distribution of accuracies for different segmentation methods.

Percentage histograms of test dataset segmentation. (a) SKF; (b) SKS; (c) SKF-Viterbi. (d) Distribution of accuracies for different segmentation methods.

- The segmentation accuracies of unseen dataset dropped slightly in both SKF and SKS, while the Viterbi maintained the same performance 84.2%.
- The fusion of SKF and duration-dependent Viterbi based heart sound data labeling results in improving the average performance in SKF form 71% to 84.2%.
- The study presented here investigated new approaches for the segmentation of fundamental heart sounds from a single channel PCG recording without using any reference signals.

REFERENCES

ACKNOWLEDGMENT

We would like to thank the Centre of Biomedical Engineering (CBE), University Technology Malaysia (UTM), the Ministry of Higher Education (MOHE) research grant 4L845, the Ministry of Science, Technology and Innovation grant 45127 (MOSTI).
