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PROBLEM
Localization of exact positions of the funda-

mental heart sounds (FHS) is an essential step to-
wards automatic analysis of heart sound phono-
cardiogram (PCG) recordings.

This is a difficult problem due to two aspects.

1. Noise: PCG segmentation is a difficult task
in clinical environments when recordings
are corrupted by in-band and background
noise.

2. Regimes: A constrained non-ergodic
Markov chain with limited number of
states that represent the heart sound
components.

CONTRIBUTIONS
We develop a general framework for seg-

menting the fundamental components of heart
sound data based on the SLDS. More precisely,
we formulate a piece-wise stationary autoregres-
sive (AR) process into a switching linear state-
space representation to identify the change points
in the auto-correlation structure to achieve seg-
mentation of heart sound signals.

We adopt a four-states Markov-switching AR
(MSAR) model to capture dynamic changes (car-
diac events) between four important heart sound
components.

We evaluate our proposed approach on a
large heart sound dataset provided by Physionet/
Challenge 2016.
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Fig.1 illustrates the proposed framework for
heart sound segmentation based on SLDS.
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METHOD

Let Y k
t , t = [1, 2, . . . , T ] and k = [1, . . . ,K], where

K = 4 corresponding to four heart sound compo-
nents. consider AR (1)

Y k
t =

P∑
p=1

ϕpY
k
t−p + εt, εt ∼ N(0, R) (1)

Parameters Initialization:
The Ordinary least squares (OLS) method was
used to estimate ϕp,such that

ϕ̂ = (XX ′)−1(X ′Y ) (2)
where, ϕ is 1 × P vector of AR coefficients, X is
P × T contains the P lag observations of Y .

State-Space Model (SSM):
Equation (1) can be written as,

yt = Cxt + εt, εt ∼ N(0, R)

xt+1 = Axt + wt, wt ∼ N(0, Q)
(3)

MSAR
The switching AR process (1) is defined by

yt =
P∑

p=1

ϕ(St)
p yt−p + ε(St)

p (4)

The switching SSM model is defined as
yt = Cxt + ε

(St)
t

xt+1 = A(St)xt + w
(St)
t

(5)

• St indexes the switching SSM parameters
A(St), ε(St), and w

(St)
t .

• {x}t−p+1
t is the lagged state dynamics.

• ε(St) and w
(St)
t are the observation and state

noise, which assumed to follow Gaussian,
εt ∼ (0, R(St)) and wt ∼ (0, Q(St)).
• The matrix A(St) consists of the state-

specific AR coefficients.
• Q(St) is a P × P sparse matrix with Q11 is

the state covariance noise.
• The switching model parameters are de-

noted by Θ = {A,Q,R}.

STATE ESTIMATION
Objective:
Given a sequence of observations {Y }T1 , the prob-
lem of inference in SLDS models is to estimate
the posterior probabilities Pr(St = j|{Y }T1 ) of
the hidden state variables St.

Switching Kalman Filter (SKF):
For each state i, j = [1, . . . ,K] at time t =
[1, . . . , T ], Kalman Filter will iteratively compute
the mean and covariance of the new predicted
state, xij

t and P ij
t respectively.

M j
t = P (St = j|{Y }T1 ) (6)

where M j
t (6) is the K×T probability that at each

time t ∈ [1, 2, . . . , T ], the observation yt belongs
to state j subject to

∑
M j

t = 1.

Switching Kalman Smoother (SKS):
The Kalman backward smoothing recursions use
the filtered state probability P (St|{Y }t1) and the
filtered densities {xj}T1 , {P j}T1 to calculate the
posterior distributions P (xt|{Y }T1 ) conditioned
to all the observations {Y }T1 starting from last
time step T [2].

Duration-Dependent Viterbi Algorithm:
The modified Viterbi algorithm was proposed by
[1]. Which decodes the most likely sequence
of states, given the SKF posterior probabilities
M j

t . The duration-dependent Viterbi algorithms
forces the state to remain in the correct sequence
(the fundamental heart sound components).

RESULTS & CONCLUSIONS
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Percentage histograms of non-split dataset
segmentation. (a) SKF; (b) SKS; (c) SKF-Viterbi.
(d) Distribution of accuracies for different seg-
mentation methods.
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Percentage histograms of test dataset segmen-
tation. (a) SKF; (b) SKS; (c) SKF-Viterbi. (d) Dis-
tribution of accuracies for different segmentation
methods.

• The segmentatin accuracies of unseen
dataset dropped slightly in both SKF and
SKS, while the Viterbi maintained the same
performance 84.2%.

• The fusion of SKF and duration-dependent
Viterbi based heart sound data labeling re-
sults in improving the average performance
in SKF form 71% to 84.2%.

• The study presented here investigated new
approaches for the segmentation of funda-
mental heart sounds from a single channel
PCG recording without using any reference
signals


