LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural Vocoders

Rodrigo Mira1 Buye Xu2 Jacob Donley2 Anurag Kumar2 Stavros Petridis1,3 Vamsi Krishna Ithapu2 Maja Pantic1,3

1iBUG, Imperial College London, UK 2Meta Reality Labs Research, USA 3Meta, UK

Motivation

- Audio-visual speech enhancement (AVSE) aims to enhance audio by leveraging the speaker’s lip movements.
- Can be trained on raw unlabeled audio-visual data by combining clean speech with noise on the fly.
- Has many applications, including video conferencing and hearing augmentation in noisy/crowded environments.

Previous Approaches

- Typically combine lipreading backbones with existing audio-only speech enhancement models.
- Often rely on Griffin-Lim or re-use the noisy phase.

Our Method - LA-VocE

Training - Stage 1

- Lipreading backbone
 - Noisy Audio
 - Video
 - AVSE Model

Training - Stage 2

- Video Encoder
 - Video
 - Audio Encoder
 - Audio Decoder
 - Griffin-Lim / Noisy Phase / Direct Pred.

Inference

- Enhanced mel-spec.
- Discriminators (multi-period + multi-scale)

Noise and Interference Study

- We train a transformer-based spectrogram enhancer inspired by recent audio-visual speech recognition models.
- Then, we train a neural vocoder (HiFi-GAN) on the same corpus to generate raw audio from spectrograms.
- Finally, we combine both during inference to perform end-to-end enhancement.
- We train our model by combining clean speech from AVSpeech (~4,700 hours, 11+ languages) with noise from the DNS Challenge noise dataset (~70,000 samples, ~150 classes).

Comparison with Other Works

- Our HiFi-GAN (trained on AVSpeech) outperforms pre-trained models, Griffin-Lim and noisy phase reconstruction.

Spec. Inversion Comparison

- Our HiFi-GAN (trained on AVSpeech) outperforms pre-trained models, Griffin-Lim and noisy phase reconstruction.