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1. Introduction
Inference tasks can be efficiently calculated via the sum-product
algorithm (SPA) on a corresponding factor graph
Problem: For factor graphs with cycles, the SPA performance heavily
relies on the factor graph structure

Idea: Optimize SPA performance by learning the factor graph structure

2. Symbol Detection
Example inference task: Transmission of independent uniformly
distributed BPSK symbols over an inter-symbol interference channel

Channel
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hℓxk−ℓ + wk

Symbol Detection

+ SPA argmax
xk yk P̂ (xk|y) x̂k

Impulse response: h = [0.407, 0.100, 0.815, 0.100, 0.407] ∈ RL+1

Additive white Gaussian noise (AWGN): wk ∼ N (0, σ2)

Symbol detection via marginalization of P (x | y) using the SPA:
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∑
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3. Factor Graph Models for Symbol Detection
Problem: SPA complexity increases exponentially with factor node (FN)
degree

Common factor graph models:

Forney Factor Graph (FFG)

x4 x5 x6· · · · · ·

FN degree L + 1
→ High complexity
Near-MAP performance

Ungerboeck Factor Graph (UFG)

x4 x5 x6· · · · · ·

FN degree 1 and 2
→ Low complexity
Poor performance

Idea: Create new factor graphs by clustering FNs of the UFG
→ Interpolation between UFG and FFG

4. Factor Node Clustering
Clustering of FNs: Combine FNs by multiplying their factors. Example:

x1 x2 x3

f3f2f1

Clustering
x1 x2 x3

f3f4

f (x1, x2, x3) = f1(x1, x3)f2(x1, x2)︸ ︷︷ ︸
f4(x1, x2, x3)

f3(x3)

Idea: FN containers transform clustering problem into systematic form
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UFG: Basis to construct
new FGs via clustering

FN Containers: Empty
FNs in which FNs of the
UFG can be clustered

Clustering options: Each FN of the UFG can be clustered into the FN
containers that are connected with the same variable nodes (VNs)
Create new factor graphs by putting all FNs in one of their options
FN container degree defines SPA complexity

5. Continuous Clustering (CC)
Idea: Instead of clustering each FN in only one container, use every FN
simultaneously in all of its clustering options:
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Step 1: Factorize all FNs fi of the UFG
via weights αj ∈ [0, 1]:

fi(·) =
∏
j

f
αj

i (·),
∑
j

αj = 1

Step 2: Cluster the factorized factors
f
αj

i into connected FN containers fC

6. Optimization
Factor graph structure is parameterized by continuous weights αij

→ Enables optimization of SPA performance via gradient descent

Direct combination with neural belief propagation (NBP) possible

Structure extraction: Learned graph is extracted by pruning empty FN
containers fc,m (i.e., R(fc,m) ≈ 0)

Relevance R(fc,m): Maximum weight αij in container fc,m

7. Results
Bit error rate (BER) for factor graphs based on containers of degree
3 or 4 (CC3 or CC4) with and without NBP:
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Histogram of the relevance of the learned FN containers:
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→ Large proportion of containers is irrelevant → Pruning possible

Section of CC4 after pruning with αthr = 0.01:
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