

Inter-Camera Tracking Based On Fully Unsupervised Online Learning **Online-Learning-Based Human Tracking Across Non-Overlapping Cameras** Young-Gun Lee¹, Zheng Tang¹, Jenq-Neng Hwang¹, Zhijun Fang² ¹University of Washington, Seattle, WA 98195, USA, ²Shanghai University of Engineering Science, Shanghai, China

Abstract

Due to the expanding scale of camera networks, multiple camera tracking of human has received higher attention in recent years. In this paper, we present a novel approach to track each human within a single camera and across multiple disjoint cameras. Our framework includes a multi-object tracking and segmentation system, a two-phase feature extractor, and an online-learning-based camera link model estimation. For tracking within a single camera, we apply tracking by segmentation and local object detection with multi-kernel feedback to adaptively improve robustness of the algorithm. In inter-camera tracking, we introduce an effective integration of appearance and context features. Automatically couples are detected, and the couple feature is also integrated with existing features. The proposed algorithm is scalable by a fully unsupervised online learning framework. In our experiments, the proposed method outperforms all the state-of-the-art in the benchmark NLPR MCT dataset.

Single-Camera Tracking and Object Segmentation

- Flow diagram of Multi-kernel Adaptive Segmentation and Tracking for SCT & segmentation.
- Comparison of segmentation performance. (a) Segmentation from the preliminary result of SuBSENSE with shadow detection. (b) Segmentation after the application of multi-kernel feedback loops (foreground in red, and detected shadow in blue).

Two-way Gaussian mixture model fitting feature

Main idea of 2WGMMF feature is that main color modes of the same identity in color histogram should be consistent across different viewpoints.

• Feature distance: $d_{2WGMMF}(A,B) = d_{NL}(\mathbf{h}_{torso}^{A}, G(\mathbf{h}_{torso}^{B})) + d_{NL}(\mathbf{h}_{legs}^{A}, G(\mathbf{h}_{legs}^{B}))$

Regional color and texture features

- The torso part is divided into six regions based on the pre-defined ratios.
- the histograms extracted from multiple regions of the torso in the other camera.

Couple feature

- A couple is defined as a pair of person traveling together through an FOV.
- After identifying the same couple across cameras, persons are re-identified.
- $d_{\text{couple identifier}}(AC, BD) = \min(d_{2\text{WGMMF}}(A, B), d_{2\text{WGMMF}}(A, D))$
- Person-to-person match in a couple: $d_{\text{couple}}^{I}(A,B) = -d_{2\text{WGMMF}}(A,B_{\text{couple}}) = -d_{2\text{WGMMF}}(A,D)$ $d_{\text{couple}}^{\text{II}}(A,B) = -\sum_{j=1}^{N} \alpha_{j} d_{feature_{j}}^{Norm}(A,D)$

+ $d_{NL}(\mathbf{h}_{\text{torso}}^B, G(\mathbf{h}_{\text{torso}}^A)) + d_{NL}(\mathbf{h}_{\text{legs}}^B, G(\mathbf{h}_{\text{legs}}^A)).$

Since a specific region covers different areas of the torso due to different viewpoints, the histogram extracted from one region of the torso can be modeled as a linear combination of

+ min $(d_{2WGMMF}(C, B), d_{2WGMMF}(C, D))$.

- $d_{\text{Final}}^{I}(A,B) = d_{2\text{WGM}}$

where $d_j = \mu_j^{\rm N} - \mu_j^{\rm P} / \sqrt{2}$

• Evaluation criteria: M

Sub- dataset	Evaluation metric	Comb1	Comb2	Comb3	Comb4	USC-Vision [1]	NLPR [2]	Hfutdspmct [3]	CRIPAC-MCT [4]
Dataset1	SCTA	0.6796				0.6448	0.6625	0.4301	0.1752
	Tracking ^{ICT}	0.8851	0.8851	0.8665	0.8789	0.9288	0.6220	0.6534	0.7111
	MCTA	0.6015	0.6015	0.5889	0.5973	0.5989	0.4120	0.2810	0.1246
Dataset2	SCTA	0.7655				0.7358	0.6904	0.4598	0.1636
	Tracking ^{ICT}	0.8842	0.8793	0.8818	0.8768	0.8691	0.6942	0.6122	0.7510
	MCTA	0.6769	0.6732	0.6751	0.6713	0.6260	0.4793	0.2815	0.1075
Dataset3	SCTA	0.6819				0.5476	0.6312	0.1475	0.0971
	Tracking ^{ICT}	0.5461	0.5329	0.5329	0.5000	0.1014	0.2953	0.2432	0.1143
	MCTA	0.3724	0.3634	0.3634	0.3410	0.0555	0.1864	0.0359	0.0111
Dataset4	SCTA	0.8658				0.6262	0.6597	0.2064	0.0720
	Tracking ^{ICT}	0.6270	0.6151	0.5992	0.6071	0.5437	0.4308	0.2944	0.2950
	MCTA	0.5429	0.5326	0.5188	0.5257	0.3404	0.2842	0.0608	0.0213
Avera	ge MCTA	0.5484	0.5427	0.5366	0.5338	0.4052	0.3405	0.1648	0.0661
Denotatio	on Feature combination				Denotation	Feature combination			
Comb1	Holistic co	Holistic color, 2WGMMF, regional color/texture, couple				Comb3	Holistic color, 2WGMMF, couple		
Comb2	2V	2WGMMF, regional color/texture, couple					Holistic color, regional color/texture, couple		

[1] Y. Cai and G. Medioni, "Exploring context information for inter-camera multiple target tracking," in Proc. IEEE WACV, 2014, pp. 761-768.

tracking," arXiv:1502.03532v2, 2016. [3] "Multi-Camera Object Tracking challenge," [online] http://mct.idealtest.org/index.html. 2333.

Final score

Since the value range of each feature distance is different, min-max normalization and fusion methods are exploited to get the final score.

$$MMF(A,B) + d_{couple}^{I}(A,B), \qquad d_{Final}^{II}(A,B) = \sum_{j=1}^{N} \alpha_j d_{feature_j}^{Norm}(A,B),$$
$$\sqrt{\left(\sigma_j^{N}\right)^2 + \left(\sigma_j^{P}\right)^2} \qquad \alpha_j = d_j / \sum_{i=1}^{4} d_i$$

Dataset and evaluation criteria

Dataset 4: Outdoor Scene

Dataset 4: Outdoor Scene

ICTA = <i>Detection</i> × <i>Tracking</i> ^{SCT} × <i>Trac</i>	$cking^{ICT} = SCTA$	× <i>Tracking</i> ^{ICT}
$= \left(\frac{2 \times Precision \times Recall}{Precision + Recall}\right) \left(1 + \frac{1}{2}\right)$	$-\frac{\sum_{t} mme_{t}^{s}}{\sum_{t} tp_{t}^{s}} \bigg) \bigg(1 - \frac{1}{2} \int_{t} \frac{1}{t} \int_{t} \frac{1}{t}$	$-\frac{\sum_{t} mme_{t}^{c}}{\sum_{t} tp_{t}^{c}}\right)$

Tracking results

References

[2] L. Cao, W. Chen, X. Chen, S. Zheng, and K. Huang, "An equalized global graphical model-based approach for multi-camera object

[4] W. Chen, L. Cao, X. Chen, and K. Huang, "A novel solution for multi-camera object tracking," in Proc. IEEE ICIP, 2014, pp. 2329-