Neighborhood-Preserving Translations on Graphs

Nicolas Grelier, Bastien Pasdeloup, Jean-Charles Vialatte and Vincent Gripon (Télécom Bretagne, Brest)

1. Motivation

Define translations in the vertex domain of graphs that matches usual ones on grid graphs.

2 Related Worl

- Use Laplacian L = D W, obtain $L = U\Lambda U^{\top}$, then $U(U^{\top}\mathbf{x}_1 \odot \mathbf{U}^{\top}\mathbf{x}_2)$ is an operator similar to a translation. [4]
- Definition of an isometric operator with respect to the ℓ_2 -norm. The proposed translation of a signal consists in multiplying the signal by some matrix which is an exponential of an imaginary diagonal matrix. [5]
- 3 Some definitions of translation exist for powers of a ring graph. [7]

3. Proposed Definitions

Perfect Graphical Translation

An application $f: \mathcal{V} \to \mathcal{V}$ is a perfect graphical translation if:

- $\bigcirc f$ is bijective;
- of or all vertex v in $\mathcal{V}, f(v)$ is a neighbor of v;
- of or all couple $(v_1, v_2) \in \mathcal{V}^2$, $(v_1, v_2) \in \mathcal{E} \Leftrightarrow (f(v_1), f(v_2)) \in \mathcal{E}$.

Candidate Graphical Translation

An application $f: \mathcal{V} \to \mathcal{V} \cup \{\omega\}$ is a candidate graphical translation if:

- $\bigcirc f_{|\mathcal{V}_{0,f}}$ is injective;
- 2 for all vertex v in $\mathcal{V}_{0,f}$, f(v) is a neighbor of v;
- of or all couple $(v_1, v_2) \in \mathcal{V}_{0,f}$, $(v_1, v_2) \in \mathcal{E} \Leftrightarrow (f(v_1), f(v_2)) \in \mathcal{E}$.

Generalized Graphical Translation

An application $f: \mathcal{V} \to \mathcal{V} \cup \{\omega\}$ is a generalized graphical translation if:

- f is a candidate graphical translation;
- $abla v \in \mathcal{V}_{0,f}$, for every g candidate graphical translation such that $g(v) = f(v), |\mathcal{V}_{0,g}| \leq |\mathcal{V}_{0,f}|$.

Geometrical Translation

An application $f: \mathcal{V} \to \mathcal{V} \cup \{\omega\}$ is a geometrical translation if there is $\delta = \pm \mathbf{e}_i$ such that

$$\forall \mathbf{v} \in \mathcal{V}, f(\mathbf{v}) = \begin{cases} \mathbf{v} + \delta & \text{if } \mathbf{v} + \delta \in \mathcal{V} \\ \omega & \text{otherwise} \end{cases}$$
.

4. Analysis on grid graphs

4.1. Analysis on cyclic grid graphs

Proposition: Let f be a perfect graphical translation on a cyclic grid graph, then f is a geometrical translation.

Sketch of proof: Let us denote $\delta = f(0) - 0 = f(0)$ and let $\mathbf{v} \in \mathcal{V}$. As a cyclic grid graph is connected, there is a path from $\mathbf{0}$ to \mathbf{v} . By propagating the contamination lemma along the path, neighbor after neighbor, we obtain that $f(\mathbf{v}) = \mathbf{v} + \delta$.

4.2. Analysis on noncyclic grid graphs

Let us consider a noncyclic grid graph with parameters d and $(\ell_i)_{1 \le i \le d}$ such that:

$$orall i \in \llbracket 1, d-1
rbracket, \ell_i \geq (2 \prod_{k=i+1}^d \ell_k) + 2.$$

Moreover, we force $\ell_d \geq 3$.

Remark: the function f_{ω} is a graphical translation.

$$f_{\omega}: \left\{egin{array}{l} \mathcal{V}
ightarrow \mathcal{V} \cup \{\omega\} \ \mathbf{v} \mapsto \omega \end{array}
ight.$$

A graph may admit several graphical translations f with various sizes of $\mathcal{V}_{0,f}$. We refer to them as c-graphical translations where $c = |\mathcal{V}_{0,f}|$.

Proposition: Graphical translations on such noncyclic grid graphs are geometrical translations and f_{ω}

6. Counter Examples

On small graphs, one can find applications that verify our definitions without being geometrical translations.

6. Demonstrations

Contamination Lemma

Let f be a perfect graphical translation on a cyclic grid graph $\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$. Let \mathbf{v} be in \mathcal{V} and consider $\delta = f(\mathbf{v}) - \mathbf{v}$, then $\forall \mathbf{w} \in \mathcal{V}$ neighbor of $\mathbf{v}, f(\mathbf{w}) = \mathbf{w} + \delta$.

Sketch of proof for noncyclic grid grid graphs

- Let f be a candidate graphical translation of any graph $\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$. For any vertex $\mathbf{v} \in \mathcal{V}$, the sequence $(f^n(\mathbf{v}))_n$ is either periodic or finite (in which case the last element is ω). We call grid graph slice $(a,i)^{\perp}$ a set of vertices that share one coordinate of value a at dimension i.
- Let us consider a noncyclic grid graph $\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$ with parameters d and $(\ell_i)_{1 \leq i \leq d}$, and f a c-graphical translation with the largest c. Then we have $|\mathcal{V}_{0,f}| \geq (\ell_1 1) \prod_{k=2}^d \ell_k$.
- Consider a union of two adjacent slices \mathcal{S} . Consider f to be a c-graphical translation with the largest c. If there exists some vertex $\mathbf{v} \in \mathcal{V}$ such that $(f^n(\mathbf{v}))_n$ is periodic, then $\mathcal{S} \not\subset \mathcal{V}_{0,f}$.
- Let us consider f to be a c-graphical translation with the largest c. Then there exists m such that $(m,1)^{\perp} \subset \mathcal{V}_{0,f}$ and $(m+1,1)^{\perp} \subset \mathcal{V}_{0,f}$. Moreover, $f((m,1)^{\perp} \cup (m+1,1)^{\perp}) \not\subset (m,1)^{\perp} \cup (m+1,1)^{\perp}$.
- Let us consider f to be a c-graphical translation with the largest c. Then f is the geometrical translation by \mathbf{e}_1 or $-\mathbf{e}_1$.

7. Conclusions

- Success for cyclic grid graphs and subfamilies of noncyclic grid graphs.
- Extensions for all graphs could be found by adapting some properties.
- Combinatorial issues to effectively find translations on a given graph.

References

- [1] Bruna et al., "Spectral networks and locally connected networks on graphs".
- [2] Friston et al., "Dynamic causal modelling".
- [3] Hammond et al., "Wavelets on graphs via spectral graph theory", 2011.
- [4] Shuman et al., "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains", 2013.
- [5] Girault, "Stationary graph signals using an isometric graph translation", 2015.
- [6] Gavili et al., "On the Shift Operator, Graph Frequency and Optimal Filtering in Graph Signal Processing", 2015.
- [7] Ekambaram, "Graph structured data viewed through a fourier lens", 2013.