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1. Introduction 3. Experimental Design 4. Qualitative Results

« The ensemble model is constructed using 8-folded
cross-validation within the training dataset. We contrast
the ensemble results with the graph-based dynamic
programming (Graph-DP) and a 2D deep retinal layer
segmentation network (Deep-Net-2D). A qualitative
comparison Is presented in the following figure.

* Training on a big OCT volume of a subject is limited by the RAM of the GPU. In order to make the network fit on a
single GPU during training, the OCT volume is sliced width-wise and depth-wise into a determined size of Sy, =64
and s,.,,=16, respectively, as depicted in the following figure.

The task of segmenting a retinal OCT scan Iinto the
constituent retinal layers is one of the enabling steps
for many applications of automated retinal OCT
analysis. .
Following figure previews 3 frames of 3D.OCT images
along with ground-truth annotations of 7 retinal layers
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dataset from the Ophthalmology Depit.
of Feiz Hospital, Isfahan, Iran. The
dataset consists of thirteen 3D macular
SD OCT images from 13 subjects with
size 512x 650x128 (i.e. 128 B-scans
per subject). 10 B-scans per subject
were randomly selected and annotated
for the retinal layers by an expert
clinician.

* In the first place, subjects 1-8 Iin the
dataset is considered as the training set
and subjects 9-13 is used for the
testing phase.

2. Methodology

correlation among nearby frames and makes predictions for the whole OCT volume in one pass.

* The architecture of the proposed 3D deep network is illustrated in following figure. It is constructed by stacking

encoder, decoder, &

classification blocks.

*1

256X64X 7x3xg 256Xx64X

coder

16x1 | || | 16x64

256X64X
16X128

Randomly selecting a depth
number of consecutive frames
from B-scan volume,

Width-wise slicing of
images into a set of
non-overlapping parts

>

B-scan labels volume per individual l-
|
=
- 1
: |
] 4
1

ground-truth annotations

nenl

Deep-Net-2D

0 =,

“

-
© n ,g -
¥ Fl

Boro%

5. Quantitative Results and Conclusion
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* In this paper, a 3D deep learning based end-to-end learning framework was proposed for segmentation of multiple retinal layers

In OCT Images. The single and ensemble performance of the proposed model evaluated with standard metrics i.e.. dice score
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and layer contour error (CE) are tabulated in the following table.
The method outperformed two state-of-the-art retinal layer segmentation i.e. the Deep-Net-2D and Graph-DP by a significant
Increase of 6% Iin the Dice metric for OPL and INL layers and consistent improvements across the retinal layers. Despite the

The encoder block ~ | P = R strategies used for dealing with the class imbalance, CE values are rather inferior for OPL and INL classes, but still promising
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