Problem Formulation

Given
- A radar system, possibly capable of forming multiple transmit/receive beams
- An L-element RIS placed at distance \(d_r \) from the radar transceiver
- A prospective target at distance \(d_t \) from the RIS

If and under what conditions is the RIS helpful in target detection?

A case study

The radar has

- One single transmit beam pointing at the target
- Two receive beams pointing at the target and the RIS

We have a direct path (radar → target → radar) and an indirect path (radar → target → RIS → radar).

We examine two situations:

- Radar and RIS are co-located (same angle of view)
- Radar and RIS are widely spaced (different angles of view)

Remark: A different architecture would be possible, i.e. the radar splits its power between two transmit beams and has one receive beam. We do not consider this situation here.

Context

- Reconfigurable Intelligent Surfaces (RIS’s) are planar structures of reflecting units capable of changing the phases of incoming signals
- No power amplification is undertaken in RIS’s
- The overall power consumption of an L-element RIS is in the order of \(LP_{\ell}(b) \), where \(P_{\ell}(b) \) is the power consumption of a single unit with a 6-bit phase resolution. Typical values are:
 - \(b = 1, 3, 4, 5, 6 \)
 - \(P_{\ell}(b) \) (mW): 1.4, 4.5, 6, 7.8
- Thus RIS’s have become popular as energy-efficient alternatives to classical Amplify-and-Forward in terrestrial wireless networks.

Assumptions

- The radar is nanometer-sized, i.e. its bandwidth \(W \) satisfies \(\max(D_x, D_y, D_z) < \frac{W}{2\pi} \)
- All of the antennas are directive: \(\min(D_x, D_y, D_z) > \lambda \)
- The maxfield is a plane wave in the paths between radar and target, radar and RIS, and RIS and each element of the RIS, i.e.:
 \[
 \left\{ \begin{array}{ll}
 \rho \geq 2 \max(D^x, D^y, D^z) / \lambda \\
 \min(D^x, D^y, D^z) \geq 2 \max(D^x, D^y, D^z) / \lambda \\
 \min(D^x, D^y, D^z) \geq 2 \max(D^x, D^y, D^z) / \lambda
 \end{array} \right.
 \]
- \(\xi \) is the target attenuation (target → radar hop)
- \(\psi \) is the attenuation of the \(\ell \)-th RIS unit and the radar receive antenna

Remark: the whole RIS and the radar may not be in the far field of each other!

Radar Target Detection Aided by
Reconfigurable Intelligent Surfaces

S. Buzzi1 E. Grossi1 M. Lops2 L. Venturino1
1DIEI, Università degli Studi di Cassino e del Lazio Meridionale, Italy
2DIETI, Università di Napoli “Federico II,” Italy
IEEE ICASSP 2022, Singapore

Signal model

Let \(x_1 \) be the observable generated by the direct path, and \(x_2 \) be the one generated by the indirect path. We have:

\[
\begin{align*}
 x_1 &= \sigma_1 \mathcal{A} \mathcal{H} + \nu_1 \\
 x_2 &= \sum_{\ell=1}^{L} \sigma_\ell \mathcal{A} \mathcal{H}_\ell \mathcal{G} + \nu_2
\end{align*}
\]

\(\sigma_\ell \) and \(\sigma_1 \) are the unknown target RIS’s (\(\sigma_\ell \) for co-located case)

\(\{ \mathcal{A} \mathcal{H}_\ell \} \) are the phases of the radar-RIS channel

\(\{ \mathcal{A} \mathcal{G} \} \) are the adjustable RIS phases

\(\alpha \) is the target attenuation (target → radar hop)

\(\psi_\ell \) is the attenuation between the \(\ell \)-th RIS unit and the radar receive antenna

Performance assessment

- Carrier at 3 GHz
- Radar antennas: uniform square arrays of area \(1 \text{ m}^2 \) and \(\frac{\lambda}{2} \) spacing
- Two transmit bandwidths: 1 and 10 MHz
- RIS sizes range from 2 to 5 meters, and \(d_r \) is such that the area covered by the radar 3-dB bandwidth equals the RIS surface

SNR Gain of the Radar+RIS system

Let \(\text{SNR}_R \) be the SNR in absence of RIS, we have:

- Closely-spaced Radar and RIS

\[
\text{SNR} = \text{SNR}_R (1 + K_r) \quad K_r = \frac{\gamma^2}{\gamma^2 + \frac{\sigma^2}{\text{SNR}_R}}
\]

- Widely-spaced Radar and RIS

Here we have two independent paths and two different SNR’s:

\[
\begin{align*}
 \text{SNR}_R &= \text{SNR}_R \\
 \text{SNR}_L &= \text{SNR}_R \frac{K_r}{K_\ell + K_r}
\end{align*}
\]

Preliminary conclusion: This scheme always results in an SNR gain.

Remark: The relevance of this gain depends on the system geometry and will be investigated later on.

Comments and Conclusions

- In a closely-spaced scenario, the system Radar+RIS is seen as a unique large array, which explains the substantial SNR gains
- In a widely-spaced scenario, the RIS is just a source of angular diversity, whereby a visible advantage is observed only for high detection probabilities
- The results and the conclusions established here carry over (more or less) to the case of a power split between two transmit antennas (one pointed at the target, the other at the RIS) with a single receive beam pointed at the target