DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION

Goal • Recognize human actions in videos by utilizing discriminative power of action codewords.

Flicflac

Motivation

cause non-discriminative codewords as shown below:

Fencing

Discriminative power of the frames taken from HMDB51 dataset for action 'Hit' (top) and 'Punch' (bottom).

Contribution

- Propose a novel encoding approach, DA-VLAD which diminishes the effect of common codewords.
- Experiments show the importance of discriminative codewords for action recognition.
- DA-VLAD with Improved Dense Trajectories (IDT) improves the state-of-the-art results on UCF101 and HMDB51 dataset.

Fiza Murtaza¹ Muhammad Haroon Yousaf MIEEE¹ Sergio A. Velastin SMIEEE^{2,3,4} ¹ Univ. of Engg. & Tech. Taxila, Pakistan ² Univ. Carlos III de Madrid, Spain ³ Cortexica Vision Systems Ltd., UK ⁴ Queen Mary Univ. of London, UK

Fall-floor

• Many overlapping frames between different actions $v_{ij} = w_{ij} \times \frac{1}{N_{ij}} \sum_{f=1}^{N_{ij}} (x_f - C_{ij})$, N_{ij} : number of features descriptors x_f assigned to C_{ij} Final VLAD vector is formed by the concatenation of v_{ij} , $\forall i \in [1:r]$ and $j \in [1:K]$, where K is number of clusters and r is number of classes

Results

HMDB51: 6,766 video clips from 51 action categories. UCF101: 13,320 realistic video clips from 1

Algorithm to learn Weights w_{ii} **Input:** Feature descriptors $\{x_1, \dots, x_n\}$ and codewords C_{ii} **Output:** q_{ij} and q'_{ij} **Procedure:** $q_{ij} = 0, \, q'_{ij} = 0$ for all actions $a_i \in A$ do for all features $x_f \in a_i$ do Assign x_f to the codeword C_{ij} such that $||x_f - C_{ij}||$ is minimum and find q_{ij} and q'_{ij} if $C_{ii} \in a_i$ do $q_{ij} = q_{ij} + 1$ else $q'_{ij} = q'_{ij} + 1$ end if end for end for $w_{ij} = \frac{q_{ij}}{q_{ij} + q'_{ij}}, \forall i \in [1:r] \text{ and } j \in [1:K]$

Conclusion