1. **Speaker Change Detection**
 - We are interested in the time points at which the change happen.
 - Speaker identity is not important.
 - Existing methods are based on comparing the features from two consecutive segments.
 - For an online application, can we operate with segments of at most 2 seconds?

2. **Method**
 1. Gender classification
 2. Contrastive loss training
 3. Triplet loss training

 \[L_e = \sum_{m=1}^{M} \delta(s_i^{(m)} = s(m))d(x_i^{(m)}, x_j^{(m)}) + \delta(s_i^{(m)} \neq s(m)) \max(0, \Delta_e - d(x_i^{(m)}, x_j^{(m)})) \]
 \[L_{tr} = \sum_{m=1}^{M} \max(0, \Delta_{tr} + d(x_i^{(m)}, x_j^{(m)}) - d(x_i^{(m)}, x_k^{(m)})) \]

3. **Results: Accuracy**
 - Dataset:
 - 144 hours of audio from LDC HUB4 Broadcast News.
 - Training segments have duration of 2s.
 - Sampled 500k pairs, 329 triplets for training.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLP</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>52.2</td>
</tr>
<tr>
<td>i-vector</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>86.6</td>
</tr>
<tr>
<td>PLP</td>
<td>S+C</td>
<td>Gender</td>
<td>Yes</td>
<td>76.9</td>
</tr>
<tr>
<td>PLP</td>
<td>S+C</td>
<td>Gender</td>
<td>No</td>
<td>78.1</td>
</tr>
<tr>
<td>PLP</td>
<td>S+C</td>
<td>Contrast</td>
<td>Yes</td>
<td>77.4</td>
</tr>
<tr>
<td>PLP</td>
<td>S+C</td>
<td>Contrast</td>
<td>No</td>
<td>87.5</td>
</tr>
<tr>
<td>PLP</td>
<td>S+C</td>
<td>Triplet</td>
<td>Yes</td>
<td>82.7</td>
</tr>
<tr>
<td>PLP</td>
<td>S+C</td>
<td>Triplet</td>
<td>No</td>
<td>89.0</td>
</tr>
</tbody>
</table>

 Results:
 - Among three pre-training methods triplet loss is the best.
 - Using Euclidean distance is slightly better than the cosine distance.

4. **Test Setup**
 - 10 audio files are chosen for test.
 - Left-right comparisons are performed around segment boundaries rather than using sliding windows for low-latency.
 - Choice of segments:
 - Based on segment type
 1. ASR
 2. Ground truth
 - Based on segment duration
 1. Variable length (< 2s)
 2. Fixed length

5. **Results: Precision-Recall and F-Measure**
 - (a) Variable length-ASR
 - (b) 2s-ASR
 - (c) Variable length-Ground truth
 - (d) 2s-Ground truth

<table>
<thead>
<tr>
<th>ASR boundary</th>
<th>Ground truth boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>2-second</td>
</tr>
</tbody>
</table>
 | i-vector | 0.3150 | 0.4902 | 0.5036 | 0.6109
 | Tri-Eucl-F | 0.3332 | 0.4591 | 0.4722 | 0.5736
 | Tri-Eucl-T | 0.4746 | 0.5323 | 0.6141 | 0.6511

 - Relative improvements in F-measures as compared to i-vectors are:
 - 50.7% in the highly mismatched condition (ASR-Variable length)
 - 6.6% in the matched condition (Ground truth-2s)

 - Score combination of i-vector and Triplet-T system performs 5% better on 2s segments.

6. **Conclusions**
 1. Jointly trained Siamese network and the classifier performs better than classifying i-vectors.
 2. Siamese embeddings are more robust to the duration mismatch between training and test segments.
 3. Siamese embeddings perform better than i-vectors for ≤2s segments which is important for achieving low-latency.