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FFT-based Simulations

Large-scale scientific simulations involving parallel Fast Fourier
Transforms (FFTs) have extreme memory requirements and high
communication overhead. It difficult to use GPUs to accelerate
legacy Fortran scientific codes because of memory constraints. But
GPUs can provide a lot of inexpensive compute power. So how can
we port memory-intensive simulations to GPUs?

A possible approach involves:
* domain decomposition
 data compression
 pruned, domain-local FFTs.

Consider Moulinec Suquet’s Basic Scheme to compute local stress
and strain fields in materials , a partial differential equation (PDE)

simulation that uses FFTs
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MSC Basic Scheme is solved by convolution with Green’s
function using FFT.

Algorithm 1 MSC Basic Scheme

1: Initialize:
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Increasing grid resolution leads to larger problem sizes, which
must be run with parallelized code. Large parallel FFT
computations on stress tensors means high memory usage and
all-all communication.

How can we go bigger?

Our solution: An algorithm and software co-design for
heterogeneous platforms using irregular domain decomposition
and domain local FFTs.

This work presents algorithm development and analysis in
MATLAB with GPUs for the proposed solution.
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Proposed Method Phase |: Successes

Computational aspects for prototype development:

The proposed MSC Alternate Scheme is a co-design of algorithm

and software for heterogeneous platforms. It enables scaling of MATLAB-FORTRAN workflow for convergence analysis is as
stress-strain simulations to large grids by overcoming high memory follows. i
requirements and communication bottlenecks.
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Irregular domains: Stress/strain in grains is smooth,
hence grains are domains assigned to each GPU. Grains
of size N x N x M used.

Lossy Compression with B-splines:

B-splines are composed of polynomial pieces and are
generalizations of Bezier curves with breakpoints called
‘knots’. For a knot sequence,
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Domain local FFT: Performed on GPU for each domain.
Platform used is MATLAB-GPU interface, using NVIDIA

Quadro K2200.
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Analysis of results:
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Lossy Compression Reconstruction Error (RE) and
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Compression Ratio (CR) for various grain sizes:

Grain 64° 128% 128%2x8 256%2x8 5122x8

Size
RE 1.49% 1.11% 0.52 % 0.44% 0.41%
CR 2.48 8.01 5.47 13 28.69

Table 1: Reconstruction error and compression ratio for

lossy compression in various grain sizes.

MATLAB-GPU Interface to obtain proof-of-concept results
for domain-local FFTs. 700 x 700 x 700 size convolution
possible grain-by-grain with irregular domain
decomposition on NVIDIA Quadro K2200 with 640 CUDA

cores and 4 GB GPU memory.

Distance map
after random
ellipsoid
packing

Grain 64° 128% 1282 x 8 2562 X 8 5122 x 8
size
Error(%)1.79 3.03 3.74-107'% 4.11-107'* 4.32.1071*

Table 2: Error in convolution by domain-local FFT method
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Phase Il: Plans

Thrust 1: Domain decomposition framework for various datasets

Extend to different datasets with irregular grains
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Irregular grain as a ‘packing’ of regular shapes (Eg., ellipsoids).
Synthetic dataset generated using watershed algorithm, ellipsoid

packing and Voronoi maps.
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Thrust 2: Deployment on heterogeneous system with Tesla
K80 and Fortran-GPU testing
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Thrust 3: Extend to visco-plastic code [2] which includes
deformation of crystals and studies cracking and fracture
formation
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Thrust 4: Use FFTX [3], a new framework for building high
performance FFT-based applications on exascale machines,
for domain-local FFTs.

FFTX is backwards compatible to FFTW and has a SPIRAL-
based back end for advanced performance optimizations.
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