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Constant Offset Time-difference-of-arrival
Given a set of microphones and sound events at a constant interval, we present a
method to find the locations of the microphones and locations of the sound events.

Problem 1. (Constant Offset Time-Difference-of-Arrival Self-Calibration)
Given measurements z̃ij

z̃ij = ‖ri − sj‖2 + o + εij, (1)

Here there are m receiver positions ri ∈ R3, i = 1, . . . ,m, and n sender positions
sj ∈ R3, j = 1, . . . , n, with a constant offset o and errors εij.

Minimal problems and solvers
Given time-difference-of-arrival measurements from five receivers to five senders, there
are four possible offsets o, given as the roots to the fourth degree polynomial f (o),
counting complex roots and multiplicity of roots.

f (o) = det(CT (Z − o)◦2C) = 0 (2)

for a compaction matrix C and a 5 x 5 matrix block Z with elements z̃ij.

Local optimization and the low rank relax-
ation
If an initial estimate of the parameters θ1 = {R, S, o} is given and if the set of inliers
is known, then refinement of the estimate can be found by optimization methods, e.g.
Levenberg-Marquardt (LM) [1],

min
θ1
f (θ1) =

∑
(i,j)∈Win

(zij − (‖ri − sj‖2 + o))2. (3)

There is an interesting relaxation to the problem, that exploits the fact that the ma-
trix with elements (zij − o)2 is rank 5, [2]. The relaxed problem involves a set of
parameters θ2 = {U, V, b, a, o}. Here the constraints can be written as

zij =
√
uTi vj + ai + bj + o, (4)

where ui denotes column i of U and vj denotes column j of V . Refinement of param-
eters can be done by performing local optimization on

min
θ2
f (θ2) =

∑
(i,j)∈Win

(
zij − (

√
uTi vj + ai + bj + o)

)2

. (5)

Computational Times for Each Solver

Implementation Matlab C++

Calculation of o 38µs 3.7µs
Calculation of θ2 = {U, V, a, b, o} 100µs N/A

Calculation of θ1 = {R, S, o} 600ms 22ms

Table 1: Execution times for 5× 5 minimal solvers steps. Notice that the steps of calculating o and the relaxed solution
is significantly faster than upgrading to the full solution

Evaluation of Minimal Solver
• 10,000 instance problems with known offsets

•Ran our solvers and compared the returned solutions with the ground truth solution

•From the 4 returned offsets, the closest solution to the ground truth was compared
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Figure 1: Left shows the histogram of the logarithm of the absolute errors, for the Matlab implementation of our minimal
solver. To the right the corresponding histogram for the C++ implementation.

Evaluation of Office Experiment
• 12 microphones (8x t.bone MM-1, 4x Shure SV100)

•Roland UA-1610 Sound Capture audio interface

•Audacity 2.3.0 with a sampling frequency of 96 kHz on a laptop

• Synthetically generated chirp played on a loudspeaker every half second

12 microphones were positioned around an open room (∼ 3 × 5 m2) and measured
using a laser to obtain ground truth positions of the microphones with an error of
±2 mm.
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Figure 2: For the office experiment the figure shows detected inliers Win (top), inlier residual histogram (bottom left),
and estimated and ground truth microphone positions (bottom right).

Evaluation of Bat Cave Experiment

• 12 microphones (4x Sanken CO-100K, 8x Knowles SPU0410)

•The sound recordings were captured using pre-amplifiers (Quadmic, RME)

•Two synchronised Fireface 800 (RME) audio interfaces running at a sampling fre-
quency of 192 kHz

•Ultrasonic chirps (8 ms, 16− 96 kHz upward hyperbolic sweep) played on a lPeer-
less XT25SC90-04 loudspeaker
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Figure 3: For the cave experiment the figure shows detected inliers Win (top), inlier residual histogram (bottom left) and
estimated microphone and sound source positions, red dots and line respectively (bottom right).

Conclusions

•A novel method has been constructed to efficiently solve a TDOA problem with a
constant offset.

•The calculation of the offsets and the calculation of the relaxed form θ2 are very
fast solvers without loss in numerical accuracy.

•From the office experiment, we can see that the calculated microphone positions are
accurate and the residuals are small, mostly in the range ±0.04 m.

•A comparison of the calculated microphone positions were made to a solution from
a Full TDOA system, [3], which produced similar results.

•From the Bat Cave experiment, we can see that the calculated microphone positions
are accurate since the residuals are small.
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