

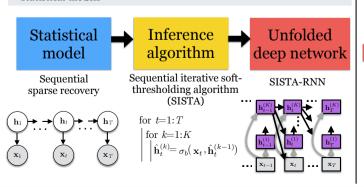
Building Recurrent Networks by Unfolding Iterative Thresholding for Sequential Sparse Recovery

Scott Wisdom¹ Thomas Powers¹ James Pitton^{1,2} Les Atlas¹

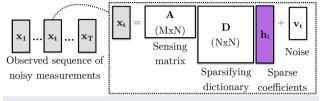
¹Department of Electrical Engineering, University of Washington, Seattle, WA, USA

²Applied Physics Laboratory, University of Washington, Seattle, WA, US

Problem statement


• While effective, conventional deep network architectures are designed by trial-and-error and are thus difficult to interpret and improve

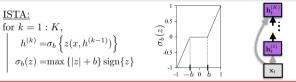
Contribution


- We construct a principled deep recurrent neural network, the SISTA-RNN, from an existing sequential sparse recovery model
- The SISTA-RNN has distinct advantages:
 - Trains faster
 - Achieves better performance than conventional deep networks
 - Has interpretable weights

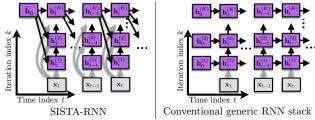
Method

• Deep unfolding constructs deep networks from inference algorithms for statistical models

Statistical model: sequential sparse coding

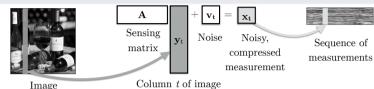


• Inference of **h** minimizes the negative log-likelihood:


$$\underset{\mathbf{h}_{1:T}}{\text{minimize}} \quad \sum_{t=1}^{I} \left(\frac{1}{2} \| \mathbf{x}_{t} - \mathbf{A} \mathbf{D} \mathbf{h}_{t} \|_{2}^{2} + \lambda_{1} \| \mathbf{h}_{t} \|_{1} + \frac{\lambda_{2}}{2} \| \mathbf{D} \mathbf{h}_{t} - \mathbf{F} \mathbf{D} \mathbf{h}_{t-1} \|_{2}^{2} \right) \\
\text{LASSO} \quad \text{Temporal model}$$

Inference algorithm: iterative soft-thresholding

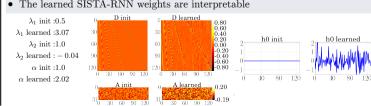
• Iterative soft-thresholding algorithm (ISTA) solves the LASSO



Unfolded deep network: sequential ISTA RNN (SISTA-RNN)

Experiment: column-wise compressive sensing of images

• Goal: recover Caltech-256 images from noisy compressed measurements



Results: SISTA-RNN trains fastest and achieves best performance

							•	
	Algorithm	Oracle?	# iter. K	# tr. ${\cal I}$	MSE	PSNR (dB)	Learning curves	
Baselines	SISTA	No	3	None	4740	12.1	1400	
	SISTA to convergence	No	≤ 1825	None	3530	13.4		
	SSpaRSA to convergence	No	≤ 420	None	3520	13.4	\$\frac{1200}{\}	-
	SISTA	Yes	3	None	4160	13.3	g 1010	
	SISTA to convergence	Yes	≤ 694	None	2400	15.0	R 1500	
	SSpaRSA to convergence	Yes	≤ 225	None	2440	15.0	§ 800	-
_	ℓ_1 -homotopy	Yes	≤ 314	None	1490	17.1	600	
	Generic RNN, rand. init.	No	3	24885	720	20.7		l
Proposed	Trained SISTA-RNN, rand. init.	No	3	24485	637	21.2	0 20 40 60 80 Epochs	100
	Trained SISTA-RNN, SISTA init.	No	3	24485	541	22.2	_	
	Reference		ℓ_1 -homotopy			Generic RNN SISTA-RNN		
		Measure						

PSNR=13 9dB

• The learned SISTA-RNN weights are interpretable

PSNR=18.0dB

PSNR=18.6dB