Abstract

We consider the problem of identifying the members of a botnet
under an application-layer (L7) DDoS attack, where a target site
is flooded with a large number of requests that emulate legiti-
mate users’ patterns. This challenging problem has been recently
addressed with reference to two simplified scenarios, where either
all bots pick requests from the same emulation dictionary (total
overlap), or they are divided in separate clusters corresponding
to distinct emulation dictionaries (no overlap at all). However,
over real networks these two extreme conditions are difficult to
realize, and the intermediate situation is observed where the em-
ulation patterns of distinct bots belong to partially overlapped
dictionaries. This intermediate situation introduces significant
sophistication in the bot identification problem. In order to ad-
dress this issue, we provide an analytical characterization of the
pairwise cluster interaction, which is exploited to devise an iden-
tification rule to discriminate legitimate users from bots and to
identify the individual bot clusters.

L7-DDoS Attacks with Emulation
Dictionaries

- In L7-DDoS attacks (e.g., Mirai |1]), a botnet
impairs a network target through a huge number of
L7 requests (e.g., HT'TP messages)

« In a sophisticated variant of L7-DDoS, a botnet
emulates legitimate traflic by gleaning admissible
messages from an emulation dictionary |2)]

= Classic entropy-based approaches [3] are ineffective
against such attacks since the traffic activities of
individual bots are not suspicious

Main innovation: Formalization of a challenging
scenario with bots organized in clusters accessing
multiple overlapped emulation dictionaries (Fig. 1)
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Figure 1: DDoS attack with multiple emulation dictionaries.
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Network Indicators

At time t, bots belonging to cluster ¢ pick legiti-
mate messages from the emulation dictionary &;(¢),
whose cardinality grows over time at rate:
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The transmission activity of a subnet & is sum-

marized by the empirical Transmission Rate:
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The message content variability is summarized by
the empirical Message Innovation Rate (MIR):
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Ns(t) — no. of transmissions in & up to time t.
PDs(t) — set of distinct messages in 8 up to t.
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Intersection and Overlap Degree

Intersection of the emulation dictionaries of

clusters ¢ and j:

Overlap degree of the emulation dictionaries of
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&ij(t) = &i(t) N &(t).
(see Fig. 2):
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BotClusterBuster Algorithm

Intuition: Pairwise checks to establish if a pivot

test node 7 form a botnet.

= Let f}/(t) — elb\tOt(t) T (1 o e)ﬁsum(t)a 0 € (Oa 1)
- Compare the MIR against the threshold ~(¢):
Pipry < y(t) = estimated botnet {p, 7}

Three cases (see Fig. 3):
I) p or 7 normal: pyg, -1 = Peum(t)

ots in the same cluster: pg, 1 & Prot(t)

ITI) p and 7 bots in distinct clusters ¢ and j:
Pipry = WijProt(t) + (1 = Wij) Poun(t)
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Figure 2: Pairwise overlaps with different values of w;;. - 5 t :
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where Z(a, \) =

denotes mean-square convergence as t — 00.
The following inequalities hold:

K, Ag, + Ap,) < pus, < Z(a, A,) + Z(a, As)) .
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Figure 3: Top. MIR evolution in cases | and |l. Bottom. Case

7 are in different clusters: on the left we see

the MIR evolution, on the right the corresponding Botnet /Cluster

avior, depending on the condition 0 2 w;;.

Experimental Setting and Results

- Normal users: real-world traffic collected @ Co.Ri.Tel. Laboratory (DIEM, University of Salerno)

« Botnet: simulated with emulation dictionaries built by using legitimate patterns from the normal dataset
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Figure 4: Left. BotClusterBuster algorithm. Three top-right panels. Performance of BotClusterBuster. Continuous [dashed| curves

represent the expected fraction of correctly [uncorrectly| banned users for the Max, Union, and Expurgation rules. Three bottom-right

panels. Cluster/Botnet identification. As 6 decreases, the algorithm looses the ability of identifying clusters, but preserves the ability of
identifying the botnet. Network Setting: 100 normal users, 100 bots; 3 clusters of 50, 30, 20 bots; a = 10; w9 = 3/4, w13 = wo3 = 1/2.
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