VOCAL MELODY EXTRACTION USING PATCH-BASED CNN

- Singing voice: a distinct object with vibrato and sliding behaviors different from other instruments
- Vocal melody extraction: a classification task for classifying whether a time-frequency patch contains a vocal event

The paradigm of object detection and **localization: object proposals + CNN**

- Convolutional neural networks (CNN)
- R-CNN for image object detection [Girshick et al., 2014]:

- **Problem: how to localize a pitch object?**
- A localization task for simultaneously performing vocal activity detection (VAD) and pitch detection (i.e., suppress unwanted harmonics)

Data representation: combining frequency and periodicity (CFP)

- A pitch object is determined by:
 - A frequency-domain representation indicating its fundamental frequency (f_0) and harmonics (nf_0) - A time-domain representation revealing its f_0 and sub-harmonics (f_0/n)
- x: frame-level signal, F: discrete Fourier transform - Magnitude spectrum: $\mathbf{z}_0[k] \coloneqq |\mathbf{Fx}|$ - Generalized cepstrum (GC): $\mathbf{z}_1[n] \coloneqq \mathbf{F}^{-1}\sigma_1(|\mathbf{F}\mathbf{x}|)$ - Generalized cepstrum of spectrum (GCoS): $\mathbf{z}_{2}[k] \coloneqq \mathbf{F}\sigma_{2}(\mathbf{F}^{-1}\sigma_{1}(|\mathbf{F}\mathbf{x}|)) [\mathsf{Su}, 2017]$ Power-scale activation functions: $\sigma_2(z) \coloneqq z^{0.6}$, $\sigma_1(z) \coloneqq z^{0.24}$ Note: a high-pass filter is required in each step for extracting pitch information

Patch-based CNN for vocal melody extraction:

	Feature	Localization	Classification
R-CNN for object	CNN	Selective	Support vector
detection		search	machine (SVM)
Patch-based CNN for	CFP	CFP and peak	CNN + fully

Map $\mathbf{z}_1[n]$ and $\mathbf{z}_2[k]$ into the log-frequency scale: $\tilde{z}_1[p]$ and $\tilde{z}_2[p]$ from E2 to G5, 48 bands per octave Pitch object localization: multiplying $\tilde{z}_1[p]$ and $\tilde{z}_2[p]$ by the time-domain representation can effectively suppress the harmonic and subharmonic peaks

 $\mathbf{y}[p] = \tilde{\mathbf{z}}_1[p] \tilde{\mathbf{z}}_2[p]$

Perform vocal-nonvocal classification simply by using a localized pitch contour

vocal melody detection

picking

Testing data	A	DC2	004 (voca)	Ν	/IRE	X05 (voca)
Method	OA	RPA	RCA	VR	VFA	OA	RPA	RCA	VR	VFA
CFP-Max	61.2	71.7	76.8	-	-	46.3	70.7	75.5	-	-
CNN-MaxIn	74.3	76.7	78.4	90.1	41.3	73.2	81.2	82.2	95.1	41.1
CNN-MaxOut	72.4	74.7	75.7	90.1	41.3	74.4	83.1	83.5	95.1	41.1
DSM (th=0.3)	68.0	68.4	70.9	78.2	25.5	76.3	70.4	71.2	80.1	13.6
DSM (th=0.1)	70.8	77.1	78.8	92.9	50.5	69.6	76.3	77.3	93.6	42.8
Testing data								yDB (
Testing data Method						N	1edle	yDB (voca	I)
Method	OA	RPA	iKala	VR	VFA	M OA	<mark>ledle</mark> RPA	yDB (RCA	<mark>(voca</mark> VR	l) VFA
Method	OA 46.9	RPA 69.7	iKala RCA 72.6	VR -	VFA -	№ ОА 38.3	<mark>ledley</mark> RPA 55.6	yDB RCA 62.4	voca VR -	I) VFA -
Method CFP-Max	OA 46.9 74.3	RPA 69.7 76.5	iKala RCA 72.6 77.8	VR - 94.2	VFA - 33.0	► OA 38.3 54.7	<mark>ledley</mark> RPA 55.6 58.7	yDB (RCA 62.4 63.6	voca VR - 78.4	l) VFA - 55.1
Method CFP-Max CNN-MaxIn	OA 46.9 74.3 74.6	RPA 69.7 76.5 76.9	iKala RCA 72.6 77.8 77.7	VR - 94.2 94.2	VFA - 33.0 33.0	► OA 38.3 54.7 55.2	ledle RPA 55.6 58.7 59.7	yDB (RCA 62.4 63.6 63.8	voca VR - 78.4 78.4	l) VFA - 55.1 55.1

Experiment settings and data

- **CFP-Max:** directly employing the CFP representation by simply taking the pitch index corresponding to the maxima of the frame
- **CNN-MaxIn:** from patches having an output probability > 0:5, taking the frequency index where the CFP representation reaches its maximum
- **CNN-MaxOut:** taking the frequency index corresponding to the largest output probability