Conformer-Based Self-Supervised Learning for Non-Speech Audio Tasks

1. Objective and Setup

- Learn audio representation using self-supervised wav2vec 2.0 task and conformer architecture
- Evaluate the generality of the representations on diverse non-speech audio tasks
- 67k hours of de-identified non-speech sounds from Facebook
- Fine-tuning during downstream adaptation

2. Wav2vec 2.0 & Conformer

- Task: Identify true latent representation for a masked time step within a set of K + 1 candidates
- Feature Encoder: Stacked spectrogram into latent representation
- Context Encoder: Linear layer
- N conformer blocks
- Self attention for global interactions
- Convolution for local correlations
- Conformer Small: cf_S (~18M)
 - 12 conformer layers, 256 encoder dim, feed-forward network dim 1024, heads 8
- Conformer Large: cf_L (~88M)
 - 12 conformer layers, 768 encoder dim, feed-forward network dim 1024, heads 12

3. Sound Event Detection

- Baseline models
 - Self-supervised (SS) + shallow and supervised (S) + shallow
- cf_L outperforms SS baselines for ESC50 & full AudioSet
- cf_L is 7.6% (19.1%) worse than S baselines in ESC50 (FSD curated)
- Pre-trained on AudioSet -> overlap with ESC50 & FSD in label-space

4. Other Non-Speech Audio Tasks

- Conformer models are competitive (if not better) compared to baselines
- Self-supervised (SS) still to be explored for some datasets

5. Prior Works on AudioSet

- cf_L outperforms SoTA in audio-only SS by 25% with mAP of 0.411
- Competitive even to the best multimodal SSL work on AudioSet
- Worse than ImageNet pre-trained models and some models trained from scratch

6. Hyperparameter Optimization

- No significant change in performance with the variation in heads
- Trendline shows a larger variation in Balanced AudioSet for variation in conformer blocks and pre-training data

7. Effect of Pre-training

- Models trained from scratch worse than pre-trained counterparts
- Pre-training helps reduce the need for labeled data by two-thirds

8. Avoiding Overfitting

- 3-stage learning rate scheduler
 - warmup, hold, exponential decay
- Batch Size
 - high-resource datasets perform best with larger batches
- Dropout in output layer of pre-trained conformer

9. References