1. Introduction

- **Task:** Professional applications often require lossless compression
- **Challenge:** Lossless compression leads to high bit rates
- **Solution:** Scalable lossless video coding based on transmitting a base layer (BL) with coarser quality and one or more enhancement layers (ELs), comprising the residual video data
- **Approach:** 3-D subband coding based on Wavelet Transform (WT) [1]

![Temporal scalability](Image)

Input video sequence

Temporal scalability $I_{t-1} \rightarrow I_t$

LP JPEG2000 BL

Spatial WT

HP JPEG2000 EL

1. By realizing P as the warping operator Y, Motion Compensated Temporal Filtering (MCTF) is achieved [2]:

\[h_{2t} = I_{2t} - I_{2t-1} \]

\[I_{2t-1} = I_{2t-1} + \frac{1}{2} W_{2t-2} - t(h_{2t}) \]

2. Content Adaptive Wavelet Lifting (CA-WL)

- **Idea:** Adaptive temporal scaling based on significant changes among subsequent frames
- **Stopping Criterion:**
 - Haar WT can be represented with tree structures
 - With each node a basis vector b_i and a wavelet coefficient vector c_i is associated, which is the inner product of the signal s with the basis b_i
 - If combined costs of child nodes exceed costs of parent node, i.e.
 \[C(s, b_0, b_1, \ldots, b_i) \leq C(s, b_0, b_1, \ldots, b_{i-1}) \]
 the child nodes shall be pruned from the tree
 - $C()$ describes a Lagrangian cost functional, which represents the coding costs:
 \[C(s, b) = D(s, b) + \lambda R(s, b) \]
 - Rate $R(s, b)$ is composed of the required rate for lossless coding of the LP and HP frames and, in case of MC, the file size of the motion vectors
 - Distortion $D(s, b)$ is calculated by the MSE of the corresponding wavelet coefficients compared to the original signal according to [3]

3. Experimental Results

- **Simulation Setup (8 bpp):**
 - Spatial resolution: Number of frames
 - AirportNight1: 640 x 480, 300
 - AirportNight2: 640 x 480, 300
 - AirportDay1: 640 x 480, 500
 - AirportDay2: 640 x 480, 500
 - Mod: 122 x 122, 30
 - HEVC: 144 x 240, 300

- **Coding parameters:**
 - LP and HP frames are encoded by JPEG2000 [5]
 - Block-based MC with block size equals 8
 - Search range equals 8 and is doubled for every decomposition level until a maximum size of 8
 - Motion vectors are encoded using the QccPack library [6]

<table>
<thead>
<tr>
<th>Coding levels</th>
<th>Surv</th>
<th>Mod</th>
<th>HEVC</th>
<th>Total average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ PSNR (Δs)</td>
<td>4.77</td>
<td>4.11</td>
<td>3.61</td>
<td>3.05</td>
</tr>
<tr>
<td>Δ File size [%]</td>
<td>5.99</td>
<td>4.99</td>
<td>3.48</td>
<td>2.18</td>
</tr>
<tr>
<td>Δ PSNR (Δs)</td>
<td>8.17</td>
<td>4.17</td>
<td>3.74</td>
<td>2.10</td>
</tr>
<tr>
<td>Δ File size [%]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4. Conclusion

- **Temporal resolution controlled by recursive application of WT**
- **Visual quality of BL is degraded by strong motion of underlying video**
- **CA-WL locally adapts temporal scaling by evaluating a Lagrangian cost functional**
- Realized by transmitting a vector v, whose length equals the number of input frames:
 - Initialize v: $(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
 - v after level $i=1$: $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$
 - v after level $i=2$: $(2, 0, 0, 2, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1)$
 - v after level $i=3$: $(3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1)$
 - Non-zero entries correspond to the number of applied decomposition levels i
 - Distance d to the corresponding HP frame is given by $d=2^{i-1}$
 - Encoded using mode-based arithmetic coding [4]

References: