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1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have received
growing interests in various applications such as
cargo delivery, filming, rescue and search, as well
as wireless platforms [1] [2]. To provide seam-
less communication for UAVs to maintain their
safe cooperation, cellular-connected UAV commu-
nication has recently been emerging. UAVs can
act as new aerial mobile users in cellular networks
[3] [4]. Nevertheless, with their size, weight, and
power (SWAP) limitations, UAVs usually have lim-
ited computation resources to handle computation-
intensive and yet latency-critical tasks.

This paper proposes a new approach by jointly
exploiting the techniques of mobile edge com-
puting (MEC) and cellular-connected UAV com-
munication. UAVs with cellular connection can of-
fload their intensive computation tasks to ground
base stations (GBSs) integrated with edge server-
s for remote execution. As GBSs are nowadays
deployed almost everywhere, UAVs can connect
to them with seamless communication and ubiq-
uitous computation services. This helps increase
their operation range and enlarge their application
horizon.

With high-mobility UAV users in MEC sys-
tem, some new opportunities and challenges are
shown up.

• A UAV user in the sky usually possesses
stronger and more reliable line-of-sight (LoS)
links with many GBSs at the same time. This
thus enables each UAV to simultaneously
connect with multiple GBSs to exploit their
distributed computing resources.

• With the controllable mobility in the three-
dimensional (3D) airspace, UAV’s trajectory
can be jointly designed with its scheduling of
computation offloading.

This paper studies a practical scenario where a
UAV is served by cellular GBSs for computation
offloading. The main results are summarized as
follows.

• We aim to minimize the UAV’s mission com-
pletion time by optimizing its trajectory joint-
ly with the computation offloading schedul-
ing, subject to the maximum speed constrain-
t of the UAV, and the computation capacity
constraints at GBSs.

• The formulated problem is non-convex and
thus difficult to be solved optimally. Thus,
we propose an efficient algorithm to obtain a
high-quality suboptimal solution.

• Numerical results show that the proposed de-
sign significantly reduces the UAV’s mission
completion time, as compared to benchmark
schemes.
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2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Setup:
• A system inclues one cellular-connected UAV

user and a set K , {1, . . . ,K} of K ≥ 1 GBSs.

• L: the number of task-input bits in the UAV;
T : the mission completion time;
ck > 0: the execution of each task-input bit re-
quires the same number of central frequency
unit (CPU) cycles at GBS k.

• Each GBS has zero altitude and fixed horizon-
tal location νk = (xk, yk).

• The UAV flies at a fixed altitude H ≥ 0 m,
and uI = (xI , yI) and uF = (xF , yF ) denote
the UAV’s initial and final locations, respec-
tively.

• û(t) = (x̂(t), ŷ(t)): the UAV’s horizontal loca-
tion at time instant t ∈ [0, T ].

• T can be discretized into N time slots each
with duration δt, i.e. T = Nδt, where δt is suf-
ficiently small and N is to be optimized. Thus
the UAV’s horizontal location at time slot n
is u[n] , û(nδt), n ∈ N , {1, ..., N}, with
u[0] , û(0) = uI and u[N ] , û(T ) = uF .

• The distance between the UAV and GBS k is

dk(u[n]) =
√

H2 + ‖u[n]− νk‖2,

where ‖ · ‖ denotes the Euclidean norm.

• The channel power gain from the UAV to G-
BS k is

hk(u[n]) =
β0

d2k(u[n])
=

β0

H2 + ‖u[n]− νk‖2
,

where β0 denotes the channel power gain at
a reference distance of 1 m.

2.2 UAV’s Flying:
• Vmax > 0: the UAV’s maximum speed;
Smax = δtVmax: the maximum UAV displace-
ment during each time slot.

• The maximum UAV speed and initial/final
location constraints are

‖u[n]− u[n− 1]‖2 ≤ S2
max, ∀n ∈ N , (1)

u[0] = uI , u[N ] = uF . (2)

2.3 UAV’s Computation Offloading:
• Time-division-multiple-access (TDMA) pro-

tocol is considered to implement the UAV’s
computation offloading. By dividing each
time slot n ∈ N into K sub-slots each with
duration τk[n] ≥ 0, we have

∑

k∈K

τk[n] = δt, ∀n ∈ N , (3)

τk[n] ≥ 0, ∀k ∈ K, n ∈ N . (4)

• The achievable offloading rate from the UAV
to GBS k is

Rk(u[n]) = B log2

(

1 +
Phk(u[n])

σ2

)

,

= B log2

(

1 +
ρ

H2 + ‖u[n]− νk‖2

)

,

where P > 0, σ2 and B are the transmit pow-
er, noise power at the receiver of each GBS

and the bandwidth, respectively, and ρ = Pβ0

σ2

is the reference signal-to-noise ratio (SNR).

• In order for the UAV to offload all the L task-
input bits to the K GBSs, we have

∑

k∈K

∑

n∈N

τk[n]Rk(u[n]) ≥ L. (5)

• As for the remote task execution at each GBS
k, we have the following computation capac-
ity constraint over time:

N
∑

j=n

ckτk[j]Rk(u[j]) ≤ (N − n)fkδt, (6)

where fk is the maximum CPU frequency at
GBS k, and fkδt represents the per-slot com-
putation capacity of GBS k.

2.4 Problem Formulation:
The joint UAV trajectory and computation offload-
ing optimization problem is formulated as

(P1) : min
{u[n],τk[n]},N∈Z+

N

s.t. (1), (2), (3), (4), (5), and (6),

where Z
+ is the set of all strictly positive integers.

3. PROPOSED SOLUTION TO (P1)
We sub-optimally solve (P1) equivalently by first optimizing over {u[n]} and {τk[n]} under any given N ,
and then using a bisection search to find the optimal N . Let N∗ denote the optimal solution of N to (P1).

3.1 Feasibility Checking Problem:
Under any given N , (P1) becomes the following
feasibility checking problem:

(P2) : find {u[n]} and {τk[n]}

s.t. (1), (2), (3), (4), (5), and (6).

If (P2) is feasible under N , then it follows that
N⋆ ≤ N ; otherwise, we have N⋆ ≥ N .

3.2 Solving (P2) Under Given N :
Note that solving (P2) is equivalent to solving the
following problem (P3) to maximize the number of

computation task-input bits L̃.

(P3) : max
{u[n]},{τk[n]},L̃≥0

L̃

s.t.
∑

k∈K

∑

n∈N

τk[n]Rk(u[n]) ≥ L̃, (7)

(1), (2), (3), (4), and (6).

If L̃∗ ≥ L, then (P2) is feasible; otherwise, (P2) is
infeasible.

3.3 Suboptimal Solution to (P3):
We jointly optimize the time allocation {τk[n]} and the UAV trajectory {u[n]} in an alternating manner
to solve (P3).

• Time Allocation for (P3) Under Given UAV
Trajectory:
Under given {u[n]}, (P3) is reduced to

(P3.1) : max
{τk[n]},L̃≥0

L̃ s.t. (3), (6), (4), and (7).

(P3.1) is a linear program (LP), which can be
solved by CVX.

• UAV Trajectory Optimization for (P3) Under
Given Time Allocation:
Under given {τk[n]}, (P3) is reduced to

(P3.2) : max
{u[n]},L̃≥0

L̃ s.t. (1), (2), (6), and (7).

(P3.2) is non-convex. We use the successive
convex approximation (SCA) technique itera-
tively to solve (P3.2), and denote {u(i)[n]} as
the local point at the i-th iteration, i ≥ 0.

First, consider constraint (6). By checking the
first-order Taylor expansion of the convex ter-
m H2+‖u[n]−νk‖2 with respect to u[n] at the
local point u(i)[n], we have

H2 + ‖u[n]− νk‖
2 ≥ q

(i)
k [n] + 2(ω(i)[n])Tu[n],

with ω
(i)[n] = u

(i)[n] − νk and q
(i)
k [n] =

H2+‖u(i)[n]−νk‖2−2(ω(i)[n])Tu(i)[n], where
(·)T indicates the transpose. Then, we obtain
an upper bound of Rk(u[n]) as

Rk(u[n]) ≤ R
(i)
k,up(u[n])

, B log2

(

1 +
ρ

q
(i)
k [n] + 2(ω(i)[n])Tu[n]

)

,

where R
(i)
k,up(u[n]) is convex with respect to

u[n]. Replacing Rk(u[n]) in (6) as R
(i)
k,up(u[n]),

we have
N
∑

j=n

ckτk[n]R
(i)
k,up(u[n]) ≤ (N − n)fkδt. (9)

Next, consider constraint (7). By taking the
first-order Taylor expansion of Rk(u[n]) with
respect to ‖u[n]−νk‖2, we can obtain a lower
bound of Rk(u[n]).

Rk(u[n]) ≥ R
(i)
k,low(u[n])

, Rk(u
(i)[n]) + b

(i)
k [n](‖u(i)[n]− νk‖

2)

− b
(i)
k [n](‖u[n]− νk‖

2),

where b
(i)
k [n] = Bρ/(ln 2d2k(u

(i)[n])(ρ +
d2k(u

(i)[n]))). Replacing Rk(u[n]) in con-

straint (7) as R
(i)
k,low(u[n]), we have

∑

k∈K

∑

n∈N

τk[n]R
(i)
k,low(u[n]) ≥ L̃. (10)

Finally, (P3.2) is approximated as (P3.3). It
can be solved optimally via CVX.

(P3.3) : max
{u[n]},L̃≥0

L̃ s.t. (1), (2), (9), and (10).

In each iteration i ≥ 1, the UAV trajecto-
ry is updated as {u(i)∗[n]} by solving (P3.3)
at local point {u(i)[n]}, i.e. u

(i+1)[n] =
u
(i)∗[n], ∀n ∈ N , where {u(0)[n]} denotes the

initial UAV trajectory. Thus (P3.2) is solved.

• Complete Algorithm to Solve (P3):
With (P3.1) and (P3.2) solved, we solve (P3)
by iteratively updating {u[n]} and {τk[n]}. In
each iteration, we first solve (P3.1) under giv-
en {u[n]} to update {τk[n]}, and then solve
(P3.2) under {τk[n]} to update {u[n]}.

With (P3) solved, the feasibility of (P2) is accordingly checked. By combing this together with the bisec-
tion search over N , problem (P1) can be efficiently solved.

4. NUMERICAL RESULTS

There are K = 5 GBSs that are distributed within a geographic area of size 1×1 km2. At each GBS, we set
fk = 2.5 GHz and ck = 103 cycles/bit. Let B = 1 MHz, H = 50 m, Vmax = 50 m/s, and P = 0.1 W. The
channel power gain at the reference distance of 1 m is β0 = −30 dB and the noise power is σ2 = −60 dBm.
We validate the performance of our proposed design comparing with the following benchmark schemes.

• Straight flight: the UAV flies straight from the initial to the final location.

• Successive hover-and-fly: the UAV flies to successfully reach at the top of the K GBSs at the maximum
speed, and hovers above each of them for computation offloading.
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(a) Optimized UAV trajectory projected on the horizontal plane under 
different values of  L.
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(b) The minimum mission completion time T versus the number of
 task-input bits L.
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5. CONCLUSION

This paper investigates a new MEC application scenario where a cellular-connected UAV offloads its
computation tasks to multiple GBSs along its trajectory.

• The UAV trajectory is jointly designed with the computation offloading scheduling, to minimize
the mission completion time, subject to the UAV’s maximum speed and initial/final location con-
straints, as well as the GBSs’ individual computation capacity constraints.

• By exploiting alternating optimization and SCA techniques, an efficient algorithm is proposed to
solve the formulated problem sub-optimally.

• Numerical results show a prominent performance gain of our design over the benchmark schemes.
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