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Simulation results

Spatial signal/phenomenon: physical process that o 3 At the sensors . At the fusion center ~+ |dentification of areas with occupied radio frequency spectrum
varies smoothly as a function of location, occur in D local computation of estimation of [ clfdr interpola- find region - ScA: 2 sources, suburban line-of-sight (LOS) environment, low transmission power
- e.g. RADAR, wireless, meteorology, environmen- B obser- soft decision clfdr’s at sensor g tion in between H, by grid  §

ol L | ) S » , . > . — ScB: 8 sources, suburban LOS environment, low transmission power
al monitoring, ... T g vations statistics | locations Sensors point decisions , , .
: | . — ScC: 1 source, urban non-LOS (NLOS) environment, high transmission power

Monitored by large-scale sensor networks (l1oT)
— congested wireless spectrum, battery powered ’ : - Contextual local false discovery rates (clfdr's) at sensors n € [N] + Observation area: 100 x 100 grid points
Fundamental problem: Detection of spatial regions associated with _ . + Performance measures averaged over 200 independent repetitions
. . . . J . v fprm,(p) =U[0,1] : known
interesting, different or anomalous behavior under strict error control Clfdr () o0 - foi,(P) /' fom(p) - estimate using 1fdr -sMoM [1] + Methods: FDRS (from the Iiterature)., ler—sMoM (previously proposed), c1fdr-sMoM-SNS,
Previously [1] proposed: multiple hypothesis testing (MHT) approach T o Fe @)+ (L= T0) - frm®) - local brior of clfdr-sMoM-SLS (both proposed in this work)
with false discovery rate (FDR) control + - the local prior of H,, = Hy
" " i . . . . . . . ) .M Table1: o = 0.1. Strict FDR control: 1fdr-sMoM, c1fdr-sMoM-
COI’ItI’IbUtIOI‘I - Estimate clfdr,, ¢ € [@] \ | V] by radial basis function interpolation with thin plate splines Fl" sLS. c1fdr-sMoM-SNS: problems in ScC, NV very small, but overall
. . : : - |l provides highest power. FDRS breaks down in ScA
- Estimate regions associated with H; s.t. FDR < « by )
» Use contextual Ifdr's (clfdr’s) to incorporate a spatially varying empiri- ! N =300 N=1000 N =3000
cal Bayes prior into the MHT approach from [1] H, = argmax{ H| |W . Z clfdr, < a} FDR Power FDR Power FDR Power
— significant improve in detection power HC[N] H| =Y 1derD-RsSMoM szg %g g;i ;Si géi égi
« Two methods to estimate the empirical Bayes prior from the data h _- ) SCA clidr—sMoM—SLS 031 211 022 260 .026 .283
: o o o o Fig. 1: ScB with N = 300 sensors. Estimated (c)lfdr's (top clfdr-sMoM-SNS .109 .224 .034 .320 .013 .404
;. sensor h;dl‘ slrlnoothlng (SLSt)h. (SNS) Learnlng the emp""cal Bayes Iocal nuu pr|0|" detection patterns with o = 0.1 (bottom). Green, red, gray: true, 154 VoM 070 963 050 90%6 052 307
. screened null sensor smoothing false. missed discoveries. r-sMoM 070 263 .050 .286 .052 .
FDRS 082 257 .057 .312 .047 378
» A generally applicable criterion for prior selection 1. ForK(-) e K 7 . Fig. 2: Sc. Cwith N — 1000 B c1fdr-sMoM-SLS 052 375 038 410 038 431
2. Forbe N K(d, b 1fdr - rEme " _. sensors. The FDR s controlled clfdr-sMoM-SNS .156 .494 .068 .560 .030 .604
System Model 3. Compute m, o(K(-);b)Vn € [N] using S (K (): ) = Zm#}% N< i) o) (1) /. | 2;3,61':|I§VG}'§:§;§5});‘;$D§%T_ 1fdr-sMoM 079 283 .062 295 .060 .297
: " | - N A7 ' S 149 303 .095 331 .074 .388
— Eq. (1): sensor Ifdr smoothing (SLS) or 2 m=1 K (dnm3 b) .7~ = .+« SMOM-SLS and clfdr-sMoM-  scC fDR i
- Discrete grid of Q points, sensors placed at N < @ grid points q- (1) 9 (SLS) | mn empirical vs.  powervs, SNS provide the largest detec- gi:g:_zmm_ghg 822 ‘5“1)2 82; gég 822 ‘5*;5;
- H,=H, (H, = H,): signal in nominal (any deviating) state at q € [Q)] ) Fq' (2)): screened null sensor smoothing S ens K (dm: b) nominal FOR  nominal FDR " POr ———————
q q . SNS meNg M,
- Ho={q € [Q]: H, = Hy}: The null region | ASNS(I¢(1): b) = m7n 2 .
! , , 4. Determine (K*%(-),b*) = 0* = argmax c¢(0) ™' (K(): ) (1—7)3 et K (dym: b) (2) Conclusion
- Hy ={q € |Q]: H, = H;}: The alternative region 0—(K () €K.b EB) man ’
" #false positives S A —H) * K(-), K: kernel function, set of candidates — found automatically . !Exploitation of spatial smoothness by spatially varying empirical Bayes prior considerably
FDR=E — —E qeg‘) ‘ - b, B: bandwidth parameter, grid — found automatically increases detection power while FDR is controlled
- #positivs | max () 7, 1{H,=H},1) . — strict control for any network size with c1fdr-sMoM-SNS

dm . Euclidean distance between sensors n, m € [V] — largest power gain with c1fdr-sMoM-SLS

« PN = {p,...,py}: set of sensor p-values at fusion center (FC), real- * s =1{n &€ [N]:p, > 7} : screened sensor set with threshold 7
izations of random variable P — contains only sensors where H,, = H, very likely

c(0) = 3" waln(7n0(0))

- Empirical Bayes prior can be learned from the data in autonomous fashion using one of the
proposed methods — no parameter tuning required

* P~ fp(p) = 7o~ fp,(p) + (1 —mo) - fpm, (p) . . N - Future research directions: robustification against wrongly reporting sensors, sequentially
- 7 : fraction of sensors where H holds — wy: pre-defined weights, >, w, =1 arriving local summary statistics, ...
- fpu,(p): PDF of p-values from sensors n € Hx,h € [1,2] = Iu(7n,0(0)) : likelihood function for sensor n € [NV]
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