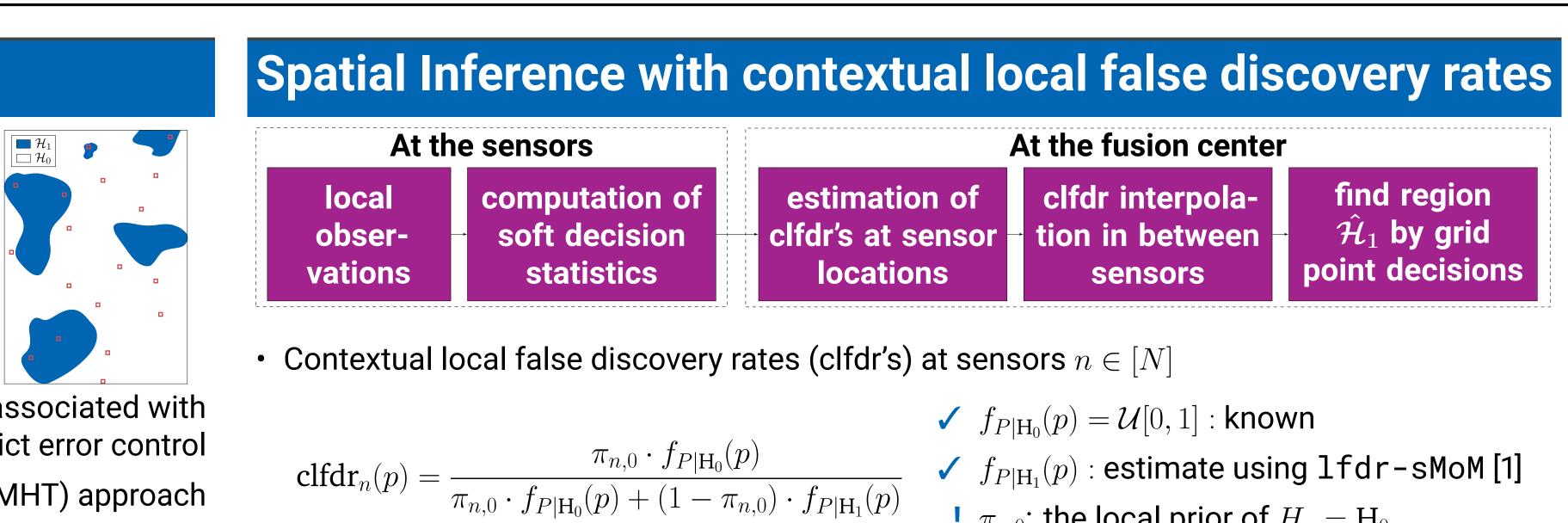
Improving Inference for Spatial Signals by Contextual False Discovery Rates

Martin Gölz[†], Abdelhak M. Zoubir[†] and Visa Koivunen^{*}

Motivation

- Spatial signal/phenomenon: physical process that varies smoothly as a function of location, occur in - e.g. RADAR, wireless, meteorology, environmental monitoring, ...
- Monitored by large-scale sensor networks (IoT) congested wireless spectrum, battery powered



- Fundamental problem: Detection of spatial regions associated with interesting, different or anomalous behavior under strict error control
- Previously [1] proposed: multiple hypothesis testing (MHT) approach with false discovery rate (FDR) control

Contribution

- Use contextual lfdr's (clfdr's) to incorporate a spatially varying empirical Bayes prior into the MHT approach from [1] \rightarrow significant improve in detection power
- Two methods to estimate the empirical Bayes prior from the data sensor lfdr smoothing (SLS)
- 2. screened null sensor smoothing (SNS)
- A generally applicable criterion for prior selection

System Model

- Discrete grid of Q points, sensors placed at $N \leq Q$ grid points
- $H_q = H_0 (H_q = H_1)$: signal in nominal (any deviating) state at $q \in [Q]$ - $\mathcal{H}_0 = \{q \in [Q] : H_q = H_0\}$: The null region
- $\mathcal{H}_1 = \{q \in [Q] : H_q = H_1\}$: The alternative region

$$FDR = E\left[\frac{\#false \text{ positives}}{\#positivs}\right] = E\left[\frac{\sum_{q \in \mathcal{H}_0} \mathbb{1}\{\hat{H}_q = H_1\}}{\max\left(\sum_{q=1}^Q \mathbb{1}\{\hat{H}_q = H_1\}, 1\right)}\right]$$

- $\mathcal{N}_S = \{n \in [N] : p_n \geq \tau\}$: screened sensor set with threshold τ • $\mathcal{P}^N = \{p_1, \ldots, p_N\}$: set of sensor p-values at fusion center (FC), real-- contains only sensors where $H_n = H_0$ very likely izations of random variable P
- $P \sim f_P(p) = \pi_0 \cdot f_{P|\mathbf{H}_0}(p) + (1 \pi_0) \cdot f_{P|\mathbf{H}_1}(p)$ - π_0 : fraction of sensors where H₀ holds - $f_{P|H_h}(p)$: PDF of p-values from sensors $n \in \mathcal{H}_X, h \in [1, 2]$

[†] Signal Processing Group, Technische Universität Darmstadt, Germany

- Estimate $clfdr_q, q \in [Q] \setminus [N]$ by radial basis function interpolation with thin plate splines
- Estimate regions associated with H_1 s.t. $FDR \le \alpha$ by

$$\hat{\mathcal{H}}_1 = \operatorname*{argmax}_{\mathcal{H}\subseteq[N]} \left\{ |\mathcal{H}| \left| \frac{1}{|\mathcal{H}|} \cdot \sum_{q \in \mathcal{H}} \mathbf{clfdr}_q \le \alpha \right\} \right\}$$

Learning the empirical Bayes local null prior

1. For $K(\cdot) \in \mathcal{K}$ 2. For $b \in \mathcal{B}$

- 3. Compute $\pi_{n,0}(K(\cdot); b) \forall n \in [N]$ using
- Eq. (1): sensor lfdr smoothing (SLS) or
- Eq. (2): screened null sensor smoothing (SNS)

4. Determine
$$(K^*(\cdot), b^*) = \theta^* = \underset{\theta = (K(\cdot) \in \mathcal{K}, b \in \mathcal{B})}{\operatorname{argmax}} c(\theta)$$

- $K(\cdot), \mathcal{K}$: kernel function, set of candidates \rightarrow found automatically
- b, \mathcal{B} : bandwidth parameter, grid \rightarrow found automatically
- $d_{m,n}$: Euclidean distance between sensors $n, m \in [N]$

•
$$c(\theta) = \sum_{n=1}^{N} w_n l_n(\hat{\pi}_{n,0}(\theta))$$

- w_n : pre-defined weights, $\sum_{n=1}^{N} w_n = 1$
- $l_n(\hat{\pi}_{n,0}(\theta))$: likelihood function for sensor $n \in [N]$

Reference: [1] M. Gölz, A.M. Zoubir and V. Koivunen, "Multiple Hypothesis Testing Framework for Spatial Signals". Submitted to IEEE Trans. Signal Inf. Process. Netw., preprint available online. arXiv: 2108.12314.

find region $\widehat{\mathcal{H}}_1$ by grid point decisions

- $\pi_{n,0}$: the local prior of $H_n = H_0$

Simulation results

- Identification of areas with occupied radio frequency spectrum - ScA: 2 sources, suburban line-of-sight (LOS) environment, low transmission power
- ScB: 8 sources, suburban LOS environment, low transmission power
- ScC: 1 source, urban non-LOS (NLOS) environment, high transmission power
- Observation area: 100×100 grid points
- Performance measures averaged over 200 independent repetitions
- **clfdr-sMoM-SLS** (both proposed in this work)

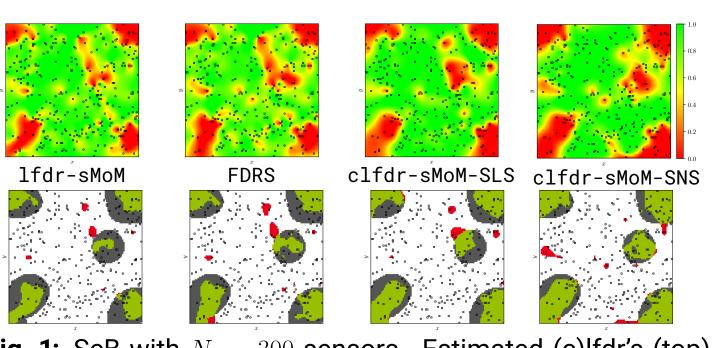


Fig. 1: ScB with N = 300 sensors. Estimated (c)lfdr's (top) detection patterns with $\alpha = 0.1$ (bottom). Green, red, gray: true, false, missed discoveries.

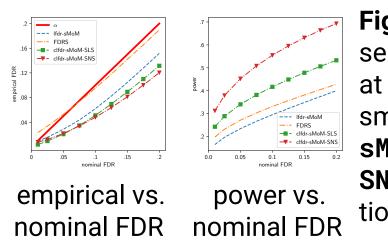


Fig. 2: Sc. C with N = 1000sensors. The FDR is controlled at all levels except for FDRS at small α . The proposed **clfdr**sMoM-SLS and clfdr-sMoM-SNS provide the largest detection power

Conclusion

- increases detection power while FDR is controlled strict control for any network size with clfdr-sMoM-SNS
- largest power gain with clfdr-sMoM-SLS
- proposed methods \rightarrow no parameter tuning required
- arriving local summary statistics, ...

$$\hat{\pi}_{n,0}^{\text{SLS}}(K(\cdot);b) = \frac{\sum_{\substack{m=1\\m\neq n}}^{N} K(d_{n,m};b) \cdot \hat{\text{lfdr}}(p_m)}{\sum_{\substack{m=1\\m\neq n}}^{N} K(d_{n,m};b)} \quad (1)$$

$$\hat{\pi}_{n,0}^{\text{SNS}}(K(\cdot);b) = \frac{\sum_{\substack{m=1\\m\neq n}}^{N} K(d_{n,m};b)}{(1-\tau) \sum_{\substack{m=1\\m\neq n}}^{N} K(d_{n,m};b)} \quad (2)$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Methods: FDRS (from the literature), lfdr-sMoM (previously proposed), clfdr-sMoM-SNS,

Table 1: $\alpha = 0.1$. Strict FDR control: lfdr-sMoM, clfdr-sMoM-**SLS**. **clfdr-sMoM-SNS**: problems in ScC, N very small, but overall provides highest power. FDRS breaks down in ScA

		= 300 Power		= 1000 Power		= 3000 Power
lfdr-sMoM FDRS ScA clfdr-sMoM-SLS clfdr-sMoM-SNS	.039 .415 .031	.117 .239 .211 .224	.023 .324 .022 .034	.138 .294 .260 <u>.320</u>	.028 .264 .026 .013	.163 .377 .283 <u>.404</u>
lfdr-sMoM		.263	.050	.286	.052	.302
FDRS		.257	.057	.312	.047	.378
clfdr-sMoM-SLS		<u>.375</u>	.038	.410	.038	.431
clfdr-sMoM-SNS		.494	.068	.560	.030	<u>.604</u>
lfdr-sMoM		.283	.062	.295	.060	.297
FDRS		.303	.095	.331	.074	.388
ScC clfdr-sMoM-SLS		.406	.051	.417	.055	.418
clfdr-sMoM-SNS		<u>.518</u>	.048	.555	.028	.577

• Exploitation of spatial smoothness by spatially varying empirical Bayes prior considerably

• Empirical Bayes prior can be learned from the data in autonomous fashion using one of the

• Future research directions: robustification against wrongly reporting sensors, sequentially

^{*} Department of Signal Processing and Acoustics, Aalto University, Finland The work of M. Gölz was supported by the German Research Foundation (DFG) under grant ZO 215/17-2.