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Motivation
• Spatial signal/phenomenon: physical process that
varies smoothly as a function of location, occur in
– e.g. RADAR, wireless, meteorology, environmen-

tal monitoring, ...
• Monitored by large-scale sensor networks (IoT)
– congested wireless spectrum, battery powered

• Fundamental problem: Detection of spatial regions associated with
interesting, different or anomalous behavior under strict error control

• Previously [1] proposed: multiple hypothesis testing (MHT) approach
with false discovery rate (FDR) control

Contribution
• Use contextual lfdr’s (clfdr’s) to incorporate a spatially varying empiri-
cal Bayes prior into the MHT approach from [1]
→ significant improve in detection power

• Two methods to estimate the empirical Bayes prior from the data
1. sensor lfdr smoothing (SLS)
2. screened null sensor smoothing (SNS)

• A generally applicable criterion for prior selection

System Model
• Discrete grid of Q points, sensors placed at N ≤ Q grid points
• Hq = H0 (Hq = H1) : signal in nominal (any deviating) state at q ∈ [Q]
– H0 = {q ∈ [Q] : Hq = H0} : The null region
– H1 = {q ∈ [Q] : Hq = H1} : The alternative region
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• PN = {p1, . . . , pN}: set of sensor p-values at fusion center (FC), real-
izations of random variable P

• P ∼ fP (p) = π0 · fP |H0
(p) + (1− π0) · fP |H1

(p)
– π0 : fraction of sensors where H0 holds
– fP |Hh

(p): PDF of p-values from sensors n ∈ HX, h ∈ [1, 2]

Spatial Inference with contextual local false discovery rates
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At the sensors At the fusion center

• Contextual local false discovery rates (clfdr’s) at sensors n ∈ [N ]

clfdrn(p) =
πn,0 · fP |H0

(p)

πn,0 · fP |H0
(p) + (1− πn,0) · fP |H1

(p)

3 fP |H0
(p) = U [0, 1] : known

3 fP |H1
(p) : estimate using lfdr-sMoM [1]

! πn,0: the local prior of Hn = H0

• Estimate clfdrq, q ∈ [Q] \ [N ] by radial basis function interpolation with thin plate splines
• Estimate regions associated with H1 s.t. FDR ≤ α by
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Learning the empirical Bayes local null prior
1. For K(·) ∈ K
2. For b ∈ B

3. Compute πn,0(K(·); b)∀n ∈ [N ] using
– Eq. (1): sensor lfdr smoothing (SLS) or
– Eq. (2): screened null sensor smoothing

(SNS)
4. Determine (K∗(·), b∗) = θ∗ = argmax

θ=(K(·)∈K,b∈B)
c(θ)
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(1)

π̂SNS
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• K(·),K: kernel function, set of candidates → found automatically
• b,B: bandwidth parameter, grid → found automatically
• dm,n: Euclidean distance between sensors n,m ∈ [N ]

• NS = {n ∈ [N ] : pn ≥ τ} : screened sensor set with threshold τ
– contains only sensors where Hn = H0 very likely

• c(θ) =
∑N

n=1wnln(π̂n,0(θ))

– wn: pre-defined weights,
∑N

n=1wn = 1

– ln(π̂n,0(θ)) : likelihood function for sensor n ∈ [N ]

Simulation results
• Identification of areas with occupied radio frequency spectrum
– ScA: 2 sources, suburban line-of-sight (LOS) environment, low transmission power
– ScB: 8 sources, suburban LOS environment, low transmission power
– ScC: 1 source, urban non-LOS (NLOS) environment, high transmission power

• Observation area: 100× 100 grid points
• Performance measures averaged over 200 independent repetitions
• Methods: FDRS (from the literature), lfdr-sMoM (previously proposed), clfdr-sMoM-SNS,
clfdr-sMoM-SLS (both proposed in this work)
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Fig. 1: ScB with N = 300 sensors. Estimated (c)lfdr’s (top)
detection patterns with α = 0.1 (bottom). Green, red, gray: true,
false, missed discoveries.
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Fig. 2: Sc. C with N = 1000
sensors. The FDR is controlled
at all levels except for FDRS at
small α. The proposed clfdr-
sMoM-SLS and clfdr-sMoM-
SNS provide the largest detec-
tion power.

Table 1: α = 0.1. Strict FDR control: lfdr-sMoM, clfdr-sMoM-
SLS. clfdr-sMoM-SNS: problems in ScC,N very small, but overall
provides highest power. FDRS breaks down in ScA

N = 300 N = 1000 N = 3000
FDR Power FDR Power FDR Power

ScA

lfdr-sMoM .039 .117 .023 .138 .028 .163
FDRS .415 .239 .324 .294 .264 .377

clfdr-sMoM-SLS .031 .211 .022 .260 .026 .283
clfdr-sMoM-SNS .109 .224 .034 .320 .013 .404

ScB

lfdr-sMoM .070 .263 .050 .286 .052 .302
FDRS .082 .257 .057 .312 .047 .378

clfdr-sMoM-SLS .052 .375 .038 .410 .038 .431
clfdr-sMoM-SNS .156 .494 .068 .560 .030 .604

ScC

lfdr-sMoM .079 .283 .062 .295 .060 .297
FDRS .149 .303 .095 .331 .074 .388

clfdr-sMoM-SLS .063 .406 .051 .417 .055 .418
clfdr-sMoM-SNS .088 .518 .048 .555 .028 .577

Conclusion
• Exploitation of spatial smoothness by spatially varying empirical Bayes prior considerably
increases detection power while FDR is controlled
– strict control for any network size with clfdr-sMoM-SNS
– largest power gain with clfdr-sMoM-SLS

• Empirical Bayes prior can be learned from the data in autonomous fashion using one of the
proposed methods → no parameter tuning required

• Future research directions: robustification against wrongly reporting sensors, sequentially
arriving local summary statistics, ...


