Motivation

Virtual Base Stations

Localization scenario with $M = 3$ base stations to localize object at (x_0, y_0) by means of direction information.

Contributions

Lemma 2.1 Given point (\hat{x}, \hat{y}), point $(x_m^{(s)}, y_m^{(s)})$ along a line $(y - y_m) = a_m(x - x_m)$ closest to (\hat{x}, \hat{y}) is given by

$$x_m^{(s)} = \frac{1}{1 + a_m^2}(\hat{x} + a_m \hat{y}) - \frac{a_m}{1 + a_m^2}(y_m - a_m x_m),$$

$$y_m^{(s)} = \frac{a_m}{1 + a_m^2}(\hat{x} + a_m \hat{y}) + \frac{1}{1 + a_m^2}(y_m - a_m x_m).$$

Lemma 2.2 The minimum sum squared distance is found for point $(\hat{x}(B), \hat{y}(B))$ that satisfies the following set of linear equations:

$$\begin{bmatrix}
\sum_{m=1}^M A_{2,m} - \sum_{m=1}^M A_{1,m} L_m \\
- \sum_{m=1}^M A_{1,m} L_m
\end{bmatrix}
\begin{bmatrix}
\hat{x}(B) \\
\hat{y}(B)
\end{bmatrix}
= - \begin{bmatrix}
\sum_{m=1}^M A_{1,m} L_m \\
\sum_{m=1}^M A_{0,m} L_m
\end{bmatrix}.$$

Simulation Results

Experimental setup starting with three base stations (circles) on the right and gradually increasing their number. The receiver location is along the x axis (crosses).

Comparison of beam based and radius based method (converted into virtual beams).

Acknowledgement: The work was funded by the Christian Doppler Laboratory for Dependable Wireless Connectivity for the Society in Motion. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.