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« Segmented to fragments from 10s to 35s,
primarily based on silence.

 Word repetition (e.g. oh oh oh) and meaning less word (e.g. oh) genre : pop, electronic, rock, hiphop, R&B

 Highly flexible pitch contours with much wider range
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« LibriSpeech : 803M words / 40M sentences
* Lyrics : 129.8M words / 574K pieces
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