

X. Wang, Z. Yang, and J. Huang Shenzhen University

Objectives

- To efficiently exploit the degrees of freedom (DoFs) offered by coprime configuration;
- To improve the convergence by exploiting sparsity of clutter spectrum.

Related Works

Problems

- Slow convergence for the spatial-temporal Smoothing-based algorithm;
- As the number of DoFs utilized by the spatial-temporal smoothing-based algorithm is just the half of the whole virtual DoFs.

Proposed Sparsity-based Algorithm

Basic idea:

- Design space-time adaptive processing algorithm in virtual domain is considered without the spatial-temporal smoothing technique;
- Using the high resolution ability of sparse recovery technique and the spasity of clutter spectrum to improve convergence of the proposed algorithm.

Experimental Results

Senarios:

Number of Sensors	6(Coprime Factors: 2, 3)	Minimal Spacing	Half-wavelength
Number of Pulses	6(Coprime Factors: 2, 3)	Minimal PRI	4000Hz
Velocity of Platform	125m/s	Clutter-to-Noise Ratio	40dB
Carrier Frequency	2.4GHz	Ratio Coefficient	4

Noise error allowance: $\zeta = \sqrt{\text{Var}(\bar{\epsilon})}$ $\overline{\epsilon} \sim CN(0, \frac{1}{N}H^{-1}(R^T \otimes R)(H^{-1})^{H})$

Note: **H** is a transforming matrix which involves virtual and rearranging process. 'Var()' denotes the variance operator.

SINR versus the number of snapshots

Fast convergence and best performance

Note: target located at distance of 32km with normalized Doppler frequency of 0. 3 and signal-to-noise (SNR) ratio of 0dB.

SINR versus different Doppler frequency

Show better SINR performance compared with others.

Note: achieves the theoretical performance Note: the number of snapshots is 45 with only 60 snapshots.

Conclusion

- A sparsity-based STAP algorithm by using the spatial-temporal sparsity of clutter in virtual domain was proposed.
- The proposed algorithm utilized more number of DoFs offered by the virtual snapshot than the spatial-temporal smoothing-based STAP.
- The proposed algorithm exhibited very fast convergence.
- The analysis of errors of virtual construction by using finite snapshots was conducted for setting the parameters of the sparse recovery algorithm.