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What is Convolutive Sparse
BCA?

e BCA: Extended ICA for Bounded Signals = Allows Separation of
Both Independent and Dependent Signals [5]

e SBCA: Extension of BCA [7] for Sparse Bounded Signals

e Convolutive SBCA: Natural extension of SBCA [2] for convolu-
tive mixtures

Instantaneous BSS:

e Instantaneous Sparse BCA Setup previously introduced in [2]:
® 51,59,...,5p: Source Signals

®y1,Y2,...,Yq: Mixture Signals

e H: ¢ X p Mixing System, where
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e W: p X g Separator System

® 21,29,...,2p. Separator Outputs

Mixing Separator

Figure 1: Geometric objects for the proposed Sparse BCA framework

Instantaneous Sparse BCA criterion given in [2]:

volume(Principal Hyper-ellipsoid)
size(Bounding [;-Norm-Ball)

maximize

The resulting instantaneous sparse BCA objective:

Convolutive BSS:

® 51,59,...,8p. Source Signals
® Y1, Y2, ...,Yq: Mixture Signals (¢ > p)
e H: ¢ x p Mixing System of order & — 1, where

H=[H(),H(1),... H(K —1)]
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e W: pxyq Separator System of order M — 1, where
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® 21,29,...,2p. Separator Outputs

e G: Overall System of order P — 1, where

:iW(Z)H(k—l), k=0,... P—1.

e Basic Assumption: BCA’s domain separability assump-
tion [5]

e The goal is to obtain a separator matrix W such that the overall
mapping

G =WH
1s equal to
_oqz—dl 0 : 0 ]
G(z) = O ozzzz_dz O p (1)
] 0 0 . apz_dp_

e o, d;. : Non-zero real scalings and non-negative integer delays

e P : Permutation matrix

The modified objective function of [2] for the separation
of convolutive sparse mixtures:
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Outline of the Proof:

e Rewrite the objective function, in terms of the argument G(k) =

P—1
> W({H(k —1)fork =0,..., P — 1, and the operator ["; such

that Iy (G) is a block Toeplitz matrix of dimension (Np) x (N +P—
1)p whose first block row is [G(0), G(1),...,G(P — 1),0,...,0
and first block column is [G(0), O, . O]T.
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J(G) = : (2)
(max, ey, . 1) HFN( 8,17
where L3 =N + P — 1.
e We can write the following inequalities:
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J(G) < 3 = )
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e Using Schur complement and Hadamard inequality for the nomina-
tor of (2), we obtain the inequality

Np (P—1)p
Vedet@®s) < T 1 Tn@s 1B TT 1 Yo I det(Rs, ) 6)
m=1 n=1
e The resulting inequality for the objective:
(P—1)p
JG) < T I1'Yn ll2 det(Rg, )72 (7)
n=I1

e Result: The upper bound for the objective J(G) on the
right hand-side of (7) is achieved if and only if G(z) =

diag (oqz_dl, ozgz_dQ, el ozpz_dp) P.

Iterative Algorithm for SBCA:

e We can write the iterative update equation using Clarke subdifteren-
tial [3] J(W) as
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where o = sign(zx () w4a7_1(1®)" and
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Experimental Results:

e Mixing: The convolutive mixing system is 1.i..d. Gaussian with order 3, and the
separator 1s of order 4.

e Comparison: Castella’s [4], Koldovsky [8], Douglas’ [6] algorithms.

First experiment: Source signals are synthetic sparse signal set given in the web-
site of RIKEN Brain Science Institute [1].
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Second experiment: Source signals are synthetic, sparse and dependent signals
generated by using Copula-T distribution.
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