DEEP RANKING: TRIPLET MATCHNET FOR MUSIC METRIC LEARNING

Rui Lu¹, Kailun Wu¹, Zhiyao Duan², Changshui Zhang¹

¹Department of Automation, Tsinghua University

²Department of Electrical and Computer Engineering, University of Rochester

March 8, 2017 Presentation at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

-Introduction

- Importance

Applications of music metric learning

Classification

Composer: Brahms

Chopin,

Composer: Dvorak

Mozart

Composer: Tchaikovsky

Composer: Vivaldi

Composers: The "Three B's"

Recommendation

Recommended Albums

- Introduction

└─ Music metric learning

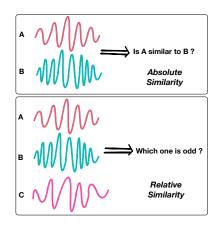
Music metric learning

Basic methods

- Supervised methods
 - RITML: learns mahalanobis distance
 - MLR: learn to rank
 - SVM-based
 - ...
- Unsupervised methods
 - Mahalanobis distance
 - PCA

...

Similarity

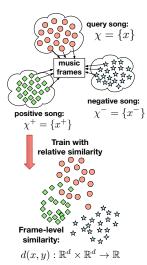


- Introduction

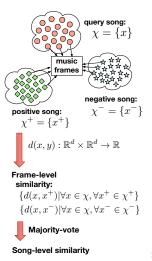
From frame-level to song-level

From frame-level to song-level

Training process



Testing process



- Introduction

└─ Traditional and deep approaches

Traditional and deep approaches

Traditional methods

- Handcrafted song-level features
- Linear projections

Deep learning approaches

- Learn features automatically
- Highly nonlinear transformations
- Success in various domains
- None for music metric learning

Our approach

Use deep neural networks to learn frame-level relative similarities of music

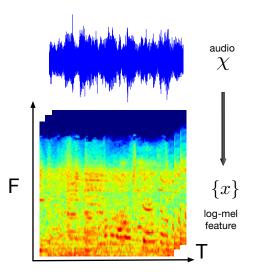
Triplet MatchNet		
Method		

Method

L_Method

└─ Data preprocessing

Data preprocessing



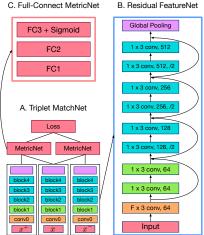
◆□> ◆□> ◆三> ◆三> ・三 のへの

L_ Method

└─ Triplet MatchNet

Triplet MatchNet

Network Structure



B Residual FeatureNet

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

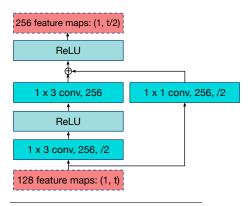
Triplet	MatchNet

— Method

Residual block

Residual block

Residual Structure



Advantages

- Easier to optimize
- Accuracy gain from deeper model^[1]
- Behave like ensembles of shallow networks^[2]

¹ Kaiming He et al, Deep residual learning for image recognition, CVPR 2016.

 2 Andreas Veit et al, Residual networks behave like ensembles of relatively shallow networks, NIPS 2016.

Triplet MatchNet	
- Method	

Loss function

Final loss

The final loss for training our Triplet MatchNet is:

$$loss(\chi, \chi^+, \chi^-) = \frac{1}{|\{x\}|} \sum_{x \in \{x\}} (\psi(x) + \phi(x)).$$

Where $\psi(x)$ is the rank-based loss; $\phi(x)$ is the contrastive loss.

Loss function

Rank-based loss

Illustration

Positive frames Query frame loss Negative frames

Equation

Rank-based loss

$$\psi(x) = \frac{1}{|\{x^-\}|} \sum_{x^- \in \{x^-\}} \max\{0, d^+_{max} - f(x, x^-)\}$$

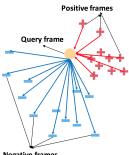
where $d_{max}^+ = \max_{x^+ \in \{x^+\}} f(x, x^+)$; f(x, y) is the proposed network's final output

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Loss function

Contrastive loss

Illustration



Equation

Contrastive loss

$$\phi(x) = -\frac{\sum_{x^+} \sum_{x^-} [\log(1 - d^+) + \log(d^-)]}{|\{x^+\}||\{x^-\}|}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where
$$d^+=f(x,x^+);~d^-=f(x,x^-)$$

Negative frames

Experiments

(ロ)、(型)、(E)、(E)、 E) の(の)

- Experiments

Dataset and Evaluation

Dataset and Evaluation

MagnaTagATune

- Relative similarity
- 860 triplets like
 (χ, χ⁺, χ[−])
- 993 unique songs
- Each song with 29 seconds

Evaluation

- Constraints Fulfillment Rate
 - Portion of triplets that preserve partial order relationships
- 10-cross validation
- Comparison methods
 - RITML^[1]
 - MLR^[2], RMLR^[3]
 - SVM, Euclidean

² Brian McFee et al, Metric learning to rank, ICML 2010.

¹ Daniel Wolff et al, Comparative music similarity modelling using transfer learning across user groups, ISMIR 2015.

Triplet MatchNet

- Experiments

Constraints Fulfillment Rate comparisons

Constraints Fulfillment Rate comparison

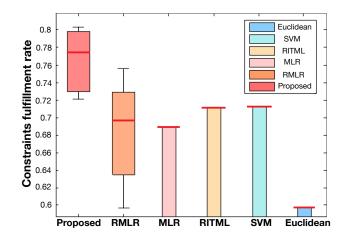


Figure: Constraints Fulfillment Rate by 10-fold cross validation.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲ 日 ▶

Triplet MatchNet

- Experiments

Constraints Fulfillment Rate comparisons

Generalization Capability

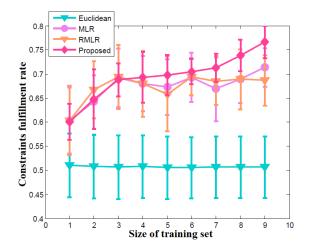


Figure: Generalization capability by 10-fold cross validation.

- Experiments

Better features

Better features extracted by Triplet MatchNet

Method	HandCrafted	PCA	Proposed
RMLR	-	65.9 ± 8.3	$\textbf{71.2} \pm \textbf{7.2}$
MLR	68.9	61.7 ± 10.5	$\textbf{71.7} \pm \textbf{6.9}$
Euclidean	59.8	50.7 ± 6.3	$\textbf{70.6} \pm \textbf{3.8}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Table: Constraints Fulfillment Rate of three baselines working with different features.

	MatchNet
End	

Thank you !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ