

Motion Dynamics Improve Speaker-Independent Lipreading

Matteo Riva, Michael Wand, Jürgen Schmidhuber

matteo.riva@usi.ch, michael@idsia.ch, juergen@idsia.ch

What is Lipreading?

Audio-Visual Recognition systems

Historically **Lipreading** has been adopted to **improve audio speech recognition** in noisy environments: the first to use it was Petajan [1984].

Being it a **challenging task**, as pointed out by Stork et al. [1992], it has also been **studied as a standalone problem**. The first to do so were Chiou and Hwang [1997].

Problem

- Lipreading involves dealing with many diverse problems
- Automatic Lipreading systems **do not generalize** well over **unseen speakers**, as investigated among others by Cox et al. [2008]; Chung and Zisserman [2017]; Wand and Schmidhuber [2017]

- **Physical traits** differ from speaker to speaker:
 - Gender, age, ethnicity
 - Mustaches, beard, lipstick
 - Mouth conformation
- Speaker-Independence is an open problem

Goal

- 1. Improve generalization over speech uttered by unknown speakers
- 2. Evaluate our new method on a word-level Lipreading task

How?

Taking inspiration from Villegas et al. [2017], we want to build a system that also explicitly models the **motion dynamics of speech**.

Goal

- 1. Improve generalization over speech uttered by unknown speakers
- 2. Evaluate our new method on a word-level Lipreading task

How?

Taking inspiration from Villegas et al. [2017], we want to build a system that also explicitly models the **motion dynamics of speech**.

Data Corpus and Dataset preparation

GRID Data Corpus

- 34 speakers
- Strict grammar and sentence structure command{4} + color{4} + preposition{4} + letter{25} + digit{10} + adverb{4}
 Example: "Place green at g 6 again"
- 51 unique words, 6000 uttered by each speaker

How to test Speaker-Independence

Development Setup

Data splits

We divided data from each speaker into train, validation and test splits.

Validation and test sets are target balanced.

SPEAKER	TRAIN
	VALIDATION
	TEST

Cross-Speaker Validation

We took each development speaker as the **target speaker one and only one time.**

We report only **average word classification accuracy**.

Source	Target
s1	s2
s2	s3
s20	s1
AVG	AVG

Baseline Definition (1)

We define a baseline system that **does not explicitly** model motion dynamics.

Baseline Definition (2)

Layers / Neurons			128	256	512
(FF+DP)×1	$LSTM \times 1$	80.2	2% / 41.0%	80.6% / 41.2%	79.9% / 41.6%
	$LSTM \times 2$	81.4	% / 42.2%	81.1% / 41.7%	80.4% / 41.3%
	LSTM×3	80.7	7% / 41.4%	81.0% / 41.1%	80.5% / 41.9%
	LSTM×1	79.9	9% / 41.2%	80.2% / 42.3%	79.2% / 41.6%
(FF+DP)×2	$LSTM \times 2$	79.9	9% / 41.6%	80.1% / 42.2%	79.7% / 40.9%
	LSTM×3	79.3	8% / 41.6%	79.3% / 42.2%	79.8% / 42.1%
	$LSTM \times 1$	77.6	5% / 41.9%	78.8% / 41.3%	77.9% / 41.1%
$(FF+DP) \times 3$	$LSTM \times 2$	77.4	% / 40.9%	78.4% / 41.7%	78.2% / 41.1%
	LSTM×3	77.1	.% / 41.2%	77.5% / 41.1%	77.5% / 41.4%
(FF+DP)×4	$LSTM \times 1$	75.6	5% / 41.8%	76.9% / 41.3%	76.3% / 40.8%
	$LSTM \times 2$	75.9	9% / 40.1%	76.7% / 40.2%	75.2% / 40.8%
	LSTM×3	74.9	9% / 40.5%	76.0% / 40.0%	75.8% / 39.9%

How?

We **experimentally** defined it **altering meta-parameters** of base system by Wand and Schmidhuber [2017]:

- Feed-forward layers
- LSTM layers
- Hidden Units

Dual-Pipeline MC Definition

Experiments

JointLSTM (128 units)

(FF+DP)×2 + LSTM×1 (w/32 units bottleneck) (w/ content downsampling)

JointLSTM (128 units)

(FF+DP) $\times 2$ + LSTM $\times 1$

Development Results

Evaluation Setup

Data splits

We divided data from each speaker into train, validation and test splits.

Validation and test sets are target balanced.

SPEAKER	TRAIN
	VALIDATION
	TEST

Cross-Speaker Validation

We took each evaluation speaker as the **target speaker one and only one time.**

We report only **average word classification accuracy**.

Source	Target
s22-s23-s24-s25	s26
s23-s24-s25-s26	s27
s34-s22-s23-s24	s25

AVG AVG

T-Test

We measure **statistical significance of improvements** yielded by Dual-Pipeline MC w.r.t. the baseline system.

 $H_0: \mu_d = 0$ $H_a: \mu_d > 0$

Results

	1 src speaker		4 src speakers		8 src speakers	
	Source	Target	Source	Target	Source	Target
Baseline	80.7%	24.4%	78.6%	46.0%	76.3%	52.2%
Dual-Pipeline MC	85.0%	26.3%	80.6%	49.3%	77.7%	55.3%
(relative improvement)	+5.3%	+7.7%	+2.6%	+7.2%	+1.9%	+5.6%
(p-value)	6.9e-05	0.0215	0.0003	0.0047	5.4e-05	0.0004

- Improvements both on source and target speakers
- Maintained when increasing the amounts of data used for training

- All improvements are statistically significant (p-values << 0.05)
- Motion Dynamics improve the model speaker-independence

Conclusion

Goal

We set out to build a word-level Lipreading model that improves on Speaker-Independence.

Results

Dual-Pipeline MC architecture yields improvements of \approx 6.8% on unseen speakers and of \approx 3.3% on known speakers.

How

We took inspiration from the work by Villegas et al. [2017] on **decoupling motion and content**.

Goal

We set out to build a word-level Lipreading model that improves on Speaker-Independence.

How

We took inspiration from the work by Villegas et al. [2017] on decoupling motion and content.

Results

Dual-Pipeline MC architecture yields improvements of \approx 6.8% on unseen speakers and of \approx 3.3% on known speakers.

Thank you for your attention

References

- Eric Petajan. Automatic Lipreading To Enhance Speech Recognition. PhD thesis, University of Illinois at Urbana-Champaign, 1984.
- David G Stork, Greg Wolff, and Earl Levine. Neural Network Lipreading System For Improved Speech Recognition. In Proc. IJCNN, volume 2, pages 289–295, 1992.
- Greg I Chiou and Jenq-Neng Hwang. Lipreading From Color Video. IEEE Transactions on Image Processing, 6(8):1192–1195, 1997.
- Stephen J. Cox, Richard Harvey, Yuxuan Lan, Jacob L. Newman, and Barry-John Theobald. The Challenge Of Multispeaker Lip-reading. In Proc. AVSP, pages 179– 184, 2008.
- Joon Son Chung and Andrew Zisserman. Lip Reading In The Wild. In Proc. ACCV, pages 87–103, 2017.
- Michael Wand and Jürgen Schmidhuber. Improving Speaker-independent Lipreading With Domain-adversarial Training. In Proc. Interspeech, pages 3662– 3666, 2017.
- Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing Motion And Content For Natural Video Sequence Prediction. In Proc. ICLR, 2017.