Class-specific Poisson Image Denoising using Importance Sampling

Milad Niknejad, José M. Bioucas-Dias, Mário A. T. Figueiredo

Instituto de Telecomunicações, Instituto Superior Técnico, University of Lisbon, Portugal
Overview

1. Class-specific image denoising
2. Patch estimation using Monte-Carlo
3. Importance Sampling
4. Applying importance sampling for image denoising
5. Proposed method

Niknejad, Bioucas-Dias, Figueiredo (IST)
ICIP 2017, Beijing, China
Often, the image to be denoised belongs to a known specific class,

Examples: text/document, face, fingerprint, a specific type of medical image (*e.g.*, brain MRI), ...
Often, the image to be denoised belongs to a known specific class,

Examples: text/document, face, fingerprint, a specific type of medical image (e.g., brain MRI), ...
Class-specific image denoising

Often, the image to be denoised belongs to a known specific class,

Examples: text/document, face, fingerprint, a specific type of medical image (e.g., brain MRI), ...

This knowledge *should be exploited* by the denoising method!
Assumption: A dataset of clean images of the same class is available.
Gaussian noise observation model:

\[y_i = x_i + v_i \]

\(x_i \) is a patch of the original image; \(y_i \) is the corresponding noisy patch; \(v_i \) is i.i.d. Gaussian noise.
Patch-based image denoising

Gaussian noise observation model:

\[y_i = x_i + v_i \]

\(x_i \) is a patch of the original image; \(y_i \) is the corresponding noisy patch; \(v_i \) is i.i.d. Gaussian noise.

Poisson noise observation model (the focus of this presentation):

\[y_{i,j} \sim \mathcal{P}(x_{i,j}). \]

\(x_{i,j} \) is the \(j^{th} \) pixel of \(x_i \).
\(\mathcal{P} \) is a Poisson distribution with mean \(x_{i,j} \).
Patch-based image denoising

Gaussian noise observation model:

\[y_i = x_i + v_i \]

\(x_i \) is a patch of the original image; \(y_i \) is the corresponding noisy patch; \(v_i \) is i.i.d. Gaussian noise.

Poisson noise observation model (the focus of this presentation):

\[y_{i,j} \sim \mathcal{P}(x_{i,j}). \]

\(x_{i,j} \) is the \(j^{th} \) pixel of \(x_i \).
\(\mathcal{P} \) is a Poisson distribution with mean \(x_{i,j} \).

Goal: recover the clean patch \(x_i \) from the noisy one \(y_i \).
MMSE (minimum mean squared error) estimation

MMSE patch estimate ($p(y = y_i)$ is replaced by $p(y_i)$):

$$\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx = \int_{\mathbb{R}^p} x \ \frac{p(y_i|x) \ p(x)}{p(y_i)} \ dx$$

This multi-dimensional integral is intractable, in general (exception: Gaussian noise and Gaussian prior).

Monte-Carlo approximation: obtain samples x_j from $p(x|y_i)$

$$\hat{\hat{x}}_i = \frac{1}{n} \sum_{j=1}^{n} x_j \lim_{n \to \infty} \hat{\hat{x}}_i = \hat{x}_i$$

However, sampling from $p(x|y_i)$ is also intractable.

Can we approximate \hat{x}_i by sampling from another distribution?
MMSE \((\text{minimum mean squared error})\) estimation

MMSE patch estimate \((p(y = y_i) \text{ is replaced by } p(y_i))\):

\[
\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \, p(x|y_i) \, dx = \int_{\mathbb{R}^p} x \, \frac{p(y_i|x) \, p(x)}{p(y_i)} \, dx
\]

- This multi-dimensional integral is intractable, in general (exception: Gaussian noise and Gaussian prior).
MMSE (minimum mean squared error) estimation

MMSE patch estimate ($p(y = y_i)$ is replaced by $p(y_i)$):

\[
\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx = \int_{\mathbb{R}^p} x \ \frac{p(y_i|x) \ p(x)}{p(y_i)} \ dx
\]

- This multi-dimensional integral is **intractable**, in general (exception: Gaussian noise and Gaussian prior).
- **Monte-Carlo approximation**: obtain samples x_j from $p(x|y)$
MMSE \((minimum\ mean\ squared\ error)\) estimation

MMSE patch estimate \((p(y = y_i)\) is replaced by \(p(y_i))\):

\[
\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx = \int_{\mathbb{R}^p} x \ \frac{p(y_i|x) \ p(x)}{p(y_i)} \ dx
\]

- This multi-dimensional integral is intractable, in general (exception: Gaussian noise and Gaussian prior).
- Monte-Carlo approximation: obtain samples \(x_j\) from \(p(x|y)\)

\[
\hat{x}_i = \frac{1}{n} \sum_{j=1}^{n} x_j \quad \lim_{n \to \infty} \hat{x}_i = \hat{x}_i
\]
MMSE estimation

MMSE patch estimate \(p(y = y_i) \) is replaced by \(p(y_i) \):

\[
\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \, p(x|y_i) \, dx = \int_{\mathbb{R}^p} x \, \frac{p(y_i|x) \, p(x)}{p(y_i)} \, dx
\]

- This multi-dimensional integral is intractable, in general (exception: Gaussian noise and Gaussian prior).
- Monte-Carlo approximation: obtain samples \(x_j \) from \(p(x|y) \)

\[
\hat{x}_i = \frac{1}{n} \sum_{j=1}^{n} x_j \quad \text{lim}_{n \to \infty} \hat{x}_i = \hat{x}_i
\]

- However, sampling from \(p(x|y_i) \) is also intractable.
MMSE (minimum mean squared error) estimation

MMSE patch estimate ($p(y = y_i)$ is replaced by $p(y_i)$):

$$\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx = \int_{\mathbb{R}^p} x \ \frac{p(y_i|x) \ p(x)}{p(y_i)} \ dx$$

- This multi-dimensional integral is **intractable**, in general (exception: Gaussian noise and Gaussian prior).
- **Monte-Carlo approximation**: obtain samples x_j from $p(x|y)$

$$\hat{x}_i = \frac{1}{n} \sum_{j=1}^{n} x_j \quad \lim_{n \to \infty} \hat{x}_i = \hat{x}_i$$

- However, sampling from $p(x|y_i)$ is also **intractable**.
- Can we approximate \hat{x}_i by sampling from another distribution?
Goal: to compute (or approximate)

\[\mathbb{E}[f(z)] = \int f(z) p(z) \, dz. \]
Self-Normalized Importance Sampling (SNIS)

Goal: to compute (or approximate)

\[\mathbb{E}[f(z)] = \int f(z) p(z) \, dz. \]

Let \(\tilde{p}(z) = c \, p(z) \) be an un-normalized version of \(p(z) \).

As in plain Monte-Carlo: \(\lim_{n \to \infty} \hat{E}_n[f(z)] = \mathbb{E}[f(z)] \).
Self-Normalized Importance Sampling (SNIS)

Goal: to compute (or approximate)

\[\mathbb{E}[f(z)] = \int f(z) p(z) \, dz. \]

- Let \(\tilde{p}(z) = c \, p(z) \) be an un-normalized version of \(p(z) \).
- Let \(\tilde{q}(z) = b \, q(z) \) be another un-normalized density; assume it is possible/easy to obtain samples \(z_1, ..., z_n \sim q(z) \).
- Constants \(c \) and \(b \) may be unknown.

\[\hat{\mathbb{E}}_n[f(z)] = \frac{1}{n} \sum_{j=1}^{n} f(z_j) \frac{\tilde{p}(z_j)}{\tilde{q}(z_j)}. \]
Self-Normalized Importance Sampling (SNIS)

Goal: to compute (or approximate)

$$\mathbb{E}[f(\mathbf{z})] = \int f(\mathbf{z}) p(\mathbf{z}) \, d\mathbf{z}.$$

- Let $\tilde{p}(\mathbf{z}) = c \, p(\mathbf{z})$ be an un-normalized version of $p(\mathbf{z})$.
- Let $\tilde{q}(\mathbf{z}) = b \, q(\mathbf{z})$ be another un-normalized density; assume it is possible/easy to obtain samples $\mathbf{z}_1, \ldots, \mathbf{z}_n \sim q(\mathbf{z})$.
- Constants c and b may be unknown.

$$\hat{\mathbb{E}}_n[f(\mathbf{z})] = \frac{1}{n} \sum_{j=1}^{n} f(\mathbf{z}_j) w(\mathbf{z}_j), \quad w(\mathbf{z}_j) = \frac{\tilde{p}(\mathbf{z}_j)}{\tilde{q}(\mathbf{z}_j)}.$$
Self-Normalized Importance Sampling (SNIS)

Goal: to compute (or approximate)

\[\mathbb{E}[f(z)] = \int f(z) \, p(z) \, dz. \]

- Let \(\tilde{p}(z) = c \, p(z) \) be an un-normalized version of \(p(z) \).
- Let \(\tilde{q}(z) = b \, q(z) \) be another un-normalized density; assume it is possible/easy to obtain samples \(z_1, ..., z_n \sim q(z) \).
- Constants \(c \) and \(b \) may be unknown.

\[
\hat{\mathbb{E}}_n[f(z)] = \frac{\sum_{j=1}^{n} f(z_j) w(z_j)}{\sum_{j=1}^{n} w(z_j)}, \quad w(z_j) = \frac{\tilde{p}(z_j)}{\tilde{q}(z_j)}.
\]

- As in plain Monte-Carlo: \(\lim_{n \to \infty} \hat{\mathbb{E}}_n[f(z)] = \mathbb{E}[f(z)] \)
Applying SNIS for MMSE patch estimation

Back to our problem:

\[\hat{x}_i = E[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx. \]
Applying SNIS for MMSE patch estimation

Back to our problem:

\[\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx. \]

- Instead of sampling from \(p(x|y_i) \), use samples \(x_1, ..., x_n \) from \(p(x) \);

\[\text{Why?} \quad \tilde{p}(z) = p(y_i|x) p(x), c = 1/p(y_i) \text{ and } \tilde{q}(z) = p(x). \]
Applying SNIS for MMSE patch estimation

Back to our problem:

\[\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx. \]

- Instead of sampling from \(p(x|y_i) \), use samples \(x_1, ..., x_n \) from \(p(x) \);
- Simply use samples from the external dataset of clean patches.
Applying SNIS for MMSE patch estimation

Back to our problem:

$$\hat{x}_i = \mathbb{E}[x|y_i] = \int_{\mathbb{R}^p} x \ p(x|y_i) \ dx.$$

- Instead of sampling from $p(x|y_i)$, use samples x_1, \ldots, x_n from $p(x)$;
- Simply use samples from the external dataset of clean patches.
- Use these samples in SNIS

$$\hat{x}_i = \hat{\mathbb{E}}_n[x|y_i] = \frac{\sum_{j=1}^{n} x_j \ w_j}{\sum_{j=1}^{n} w_j}, \quad w_j = p(y_i|x = x_j)$$
Applying SNIS for MMSE patch estimation

Back to our problem:

\[\hat{x}_i = \mathbb{E}[x | y_i] = \int_{\mathbb{R}^p} x \ p(x | y_i) \ dx. \]

- Instead of sampling from \(p(x | y_i) \), use samples \(x_1, ..., x_n \) from \(p(x) \);
- Simply use samples from the external dataset of clean patches.
- Use these samples in SNIS

\[\hat{x}_i = \hat{\mathbb{E}}_n [x | y_i] = \frac{\sum_{j=1}^{n} x_j \ w_j}{\sum_{j=1}^{n} w_j}, \quad w_j = p(y_i | x = x_j) \]

- Why? \(\tilde{p}(z) = p(y_i | x) \ p(x), \ c = 1/p(y_i) \) and \(\tilde{q}(z) = p(x) \).
For Poisson noise, the weights are easy to obtain $(y_{i,j} \sim \mathcal{P}(x_{i,j})$, i.i.d.):

$$wj = \prod_{l=1}^{N} \frac{e^{-x(j,l)}(x(j,l))^{y(j,l)}}{y(j,l)!}$$

It can be adapted to other image restoration tasks, such as deblurring,
Applying SNIS for MMSE patch estimation (II)

- For Poisson noise, the weights are easy to obtain \(y_{i,j} \sim \mathcal{P}(x_{i,j}), \text{i.i.d.} \)

\[
w_{j} = \prod_{l=1}^{N} \frac{e^{-x_{(j,l)}}(x_{(j,l)})^{y_{(j,l)}}}{y_{(j,l)}!}
\]

- It can be adapted to other image restoration tasks, such as deblurring,

\[
w_{j} = \prod_{l=1}^{N} \frac{e^{-H_{(j,l)}x_{(j,l)}}(H_{(j,l)}x_{(j,l)})^{y_{(j,l)}}}{y_{(j,l)}!}
\]
Applying SNIS for MMSE patch estimation (II)

- For Poisson noise, the weights are easy to obtain ($y_{i,j} \sim P(x_{i,j})$, i.i.d.)
 \[w_j = \prod_{l=1}^{N} \frac{e^{-x_{(j,l)}} (x_{(j,l)})^{y_{(j,l)}}}{y_{(j,l)}!} \]

- It can be adapted to other image restoration tasks, such as deblurring,
 \[w_j = \prod_{l=1}^{N} \frac{e^{-H_{(j,l)}x_{(j,l)}} (H_{(j,l)}x_{(j,l)})^{y_{(j,l)}}}{y_{(j,l)}!} \]

- It can be generalized to other noise models.
Key observations:

1. Using samples from $p(x)$ is sub-optimal, as it may have high variance (or even infinite variance). It requires very large n.

Proposed approach:

1. Cluster the patches in the external dataset.
2. Assign each noisy patch to the closest cluster.
3. Use the corresponding clean patches as samples from the proposal distribution for SNIS.
Key observations:

1. Using samples from $p(x)$ is sub-optimal, as it may have high variance (or even infinite variance). It requires very large n.

2. The proposal distribution should be made similar to each target distribution $p(x|y_i)$: Estimator with lower MMSE for limited number of samples.
Making it work: proposed approach

Key observations:

1. Using samples from $p(x)$ is sub-optimal, as it may have high variance (or even infinite variance). It requires very large n.

2. The proposal distribution should be made similar to each target distribution $p(x|y_i)$: Estimator with lower MMSE for limited number of samples.

Proposed approach:

1. Cluster the patches in the external dataset.
Making it work: proposed approach

Key observations:

1. Using samples from $p(x)$ is sub-optimal, as it may have high variance (or even infinite variance). It requires very large n.

2. The proposal distribution should be made similar to each target distribution $p(x|y_i)$: Estimator with lower MMSE for limited number of samples.

Proposed approach:

1. Cluster the patches in the external dataset.

2. Assign each noisy patch to the closest cluster.
Making it work: proposed approach

Key observations:

1. Using samples from $p(x)$ is sub-optimal, as it may have high variance (or even infinite variance). It requires very large n.

2. The proposal distribution should be made similar to each target distribution $p(x|y_i)$: Estimator with lower MMSE for limited number of samples.

Proposed approach:

1. Cluster the patches in the external dataset.

2. Assign each noisy patch to the closest cluster.

3. Use the corresponding clean patches as samples from the proposal distribution for SNIS.
Proposed method

- Clustering: Any clustering algorithm can be used (k-means,...). The whole dataset of patches is clustered to K clusters. $\{X_1 \ldots X_K\}$.

Objective is to solve the following simultaneous classification and estimation problem:

$$\hat{(x_i, \hat{k}_i)} = \arg\min_{(u, k)} \int_{\mathbb{R}^m} \|u - x\|^2_2 p(x|y_i, k) \, dx$$

The above chooses the best cluster \hat{k}_i, and use this distribution to approximate the integral. It is equivalent to sampling from (unknown) \hat{k}_ith distribution as the proposal distribution. The above integral is intractable, but we can use SNIS.
Proposed method

- Clustering: Any clustering algorithm can be used (k-means,...). The whole dataset of patches is clustered to K clusters. $\{X_1 \ldots X_K\}$.

- Objective is to solve the following simultaneous classification and estimation problem:

$$ (\hat{x}_i, \hat{k}_i) = \arg\min_{(u,k)} \int_{\mathbb{R}^m_+} \|u - x\|^2_2 p(x|y_i, k) \, dx $$

The above chooses the best cluster \hat{k}_i, and uses this distribution to approximate the integral. It is equivalent to sampling from the unknown \hat{k}_ith distribution as the proposal distribution.
Proposed method

- Clustering: Any clustering algorithm can be used (k-means,...). The whole dataset of patches is clustered to K clusters. $\{X_1 \ldots X_K\}$.

- Objective is to solve the following simultaneous classification and estimation problem:

 $$(\hat{x}_i, \hat{k}_i) = \arg \min_{(u,k)} \int_{\mathbb{R}^m} \|u - x\|^2_2 p(x|y_i, k) \, dx$$

- The above chooses the best cluster \hat{k}_i, and use this distribution to approximate the integral.
Proposed method

- **Clustering**: Any clustering algorithm can be used (e.g., k-means, ...). The whole dataset of patches is clustered to \(K \) clusters. \(\{X_1 \ldots X_K\} \).

- **Objective** is to solve the following simultaneous classification and estimation problem:

\[
(\hat{x}_i, \hat{k}_i) = \arg \min_{(u,k)} \int_{\mathbb{R}^m} \| u - x \|^2_2 p(x|y_i, k) \, dx
\]

- The above chooses the best cluster \(\hat{k}_i \), and use this distribution to approximate the integral.

- It is equivalent to sampling from (unknown) \(\hat{k}_i^{th} \) distribution as the proposal distribution.
Proposed method

- Clustering: Any clustering algorithm can be used (k-means,...). The whole dataset of patches is clustered to K clusters. $\{X_1 \ldots X_K\}$.

- Objective is to solve the following simultaneous classification and estimation problem:

$$\hat{\mathbf{x}}_i, \hat{k}_i = \arg \min_{\mathbf{u},k} \int_{\mathbb{R}^m_+} \left\| \mathbf{u} - \mathbf{x} \right\|^2_2 p(\mathbf{x}|\mathbf{y}_i, k) \, d\mathbf{x}$$

- The above chooses the best cluster \hat{k}_i, and use this distribution to approximate the integral.

- It is equivalent to sampling from (unknown) \hat{k}_i^{th} distribution as the proposal distribution.

- The above integral is intractable, but we can use SNIS.
\[\mathbb{E}[\|x - u\|_2^2 | y_i, k] = \int_{\mathbb{R}_+^m} \|u - x\|_2^2 p(x | y_i, k) \, dx. \]
Proposed method

\[\mathbb{E}[\|x - u\|^2_2|y_i, k] = \int_{\mathbb{R}^m} \|u - x\|^2_2 p(x|y_i, k) \, dx. \]

Using SNIS, the above can be approximated by

\[\hat{\mathbb{E}}_n[\|x - u\|^2_2|y_i, k] = \sum_{j_k=1}^{n} \frac{\|u - x_{jk}\|^2_2 w_{jk}}{\sum_{j=1}^{n} w_{jk}} \]

(1)

where the \(x_{jk}\), for \(j_k = 1, \ldots, n\) are samples from the distribution \(p(x|k)\).

\[w_{jk} = p(y_i|x_{jk}) \]
Proposed method

\[(\hat{x}_i, \hat{k}_i) = \arg\min_{(u,k)} \mathbb{E}_n[\|x - u\|_2^2 | y_i, k] \]
Proposed method

\[(\hat{x}_i, \hat{k}_i) = \arg \min_{(u,k)} \mathbb{E}_n[\|x - u\|_2^2 | y_i, k] \]

We Minimize by alternating minimization

- when \(u = \hat{x}_i \) is fixed,

\[
\hat{k}_i = \arg \min_{k} \frac{\sum_{j=1}^{n_2} w_{jk} \|\hat{x}_i - x_{jk}\|_2^2}{\sum_{j=1}^{n_2} w_{jk}}.
\]
Proposed method

\[(\hat{x}_i, \hat{k}_i) = \arg \min_{(u,k)} \mathbb{E}_n[\|x - u\|_2^2 | y_i, k] \]

We Minimize by alternating minimization

- when \(u = \hat{x}_i\) is fixed,

\[\hat{k}_i = \arg \min_k \frac{\sum_{j_k=1}^{n_2} w_{j_k} \|\hat{x}_i - x_{j_k}\|_2^2}{\sum_{j=1}^{n_2} w_{j_k}}.\]

- when \(k = \hat{k}\) is fixed,

\[\hat{x}_i = \mathbb{E}_{n_1}[x | y_i, \hat{k}] = \frac{\sum_{j=1}^{n_1} w_{j\hat{k}} x_{j\hat{k}}}{\sum_{j=1}^{n_1} w_{j\hat{k}}}.\]
Implementation Details

Speeding up the algorithm:

The key to speeding up is to limit the numbers of patch samples n_1 and n_2.

Clustering: $n_2 = 30$, overall 600 patches for all $k = 20$ clusters (less than 1 percent of samples in external datasets).

Denoising: samples derived for each patch n_1 was set to 300.

Overall: 900 patches are processed for each denoised patch (computational complexity is similar to an internal non-local denoising with the patches constrained in 30×30 window).
Implementation Details

Speeding up the algorithm:

- The key to speeding up is to limit the numbers of patch samples n_1 and n_2.
Implementation Details

Speeding up the algorithm:

- The key to speeding up is to limit the numbers of patch samples n_1 and n_2.

- **Clustering**: $n_2 = 30$, overall 600 patches for all $k = 20$ clusters (less than 1 percent of samples in external datasets).
Speeding up the algorithm:

- The key to speeding up is to limit the numbers of patch samples n_1 and n_2.

- **Clustering**: $n_2 = 30$, overall 600 patches for all $k = 20$ clusters (less than 1 percent of samples in external datasets).

- **Denoising**: samples derived for each patch n_1 was set to 300.
Implementation Details

Speeding up the algorithm:

- The key to speeding up is to limit the numbers of patch samples n_1 and n_2.

- **Clustering**: $n_2 = 30$, overall 600 patches for all $k = 20$ clusters (less than 1 percent of samples in external datasets).

- **Denoising**: samples derived for each patch n_1 was set to 300.

- Overall: 900 patches are processed for each denoised patch (computational complexity is similar to an internal non-local denoising with the patches constrained in 30×30 window).
Experiment 1

Noisy image (Peak=10) Non-local PCA (PSNR=22.60) VST+BM3D (PSNR=24.79) Poisson NL means (PSNR=24.55) Proposed (PSNR=26.40)
Experiment 2

Noisy (Peak=2)
Non-local PCA (PSNR=14.95)
VST+BM3D (PSNR=14.55)
Proposed (PSNR=18.64)
We proposed a method based on importance sampling in which no parametric distribution is fitted to data.
Conclusion

- We proposed a method based on importance sampling in which no parametric distribution is fitted to data.
- Any clustering method can be used.
Conclusion

- We proposed a method based on importance sampling in which no parametric distribution is fitted to data.
- Any clustering method can be used.
- Each cluster can be seen as samples of unknown proposal distribution.
Conclusion

- We proposed a method based on importance sampling in which no parametric distribution is fitted to data.

- Any clustering method can be used.

- Each cluster can be seen as samples of unknown proposal distribution.

- The method can be generalized easily to other image restoration inverse problems.
A. Owen
Monte Carlo Theory, Methods and Examples
Available at http://statweb.stanford.edu/ owen/mc/.

Bugallo, M.F., Martino, L. and Corander, J.
Adaptive importance sampling in signal processing

Salmon, J., Harmany, Z., Deledalle, C. A., Willett, R.
Poisson noise reduction with non-local PCA.
Journal of mathematical imaging and vision, 48(2), 279-294.
Thanks for your attention