PROBABILISTIC GRAPH NEURAL NETWORKS
FOR TRAFFIC SIGNAL CONTROL

Authors: Ting Zhong, Zheyang Xu, Fan Zhou

University of Electronic Science and Technology of China, China

Sichuan Innovation Base for AI Industry-Education Integration

Presenter: Zheyang Xu
Introduction

- Background
- Existing Methods
- Challenges
- Our model: TSC-GNN
Problem Definition

- Reinforcement Learning for Traffic Signal Control

\[\langle S, O, A, P, R, \pi, \gamma \rangle \]
Our model: TSC-GNN

- Cooperation of traffic signals
- Variational Graph Inference
- Q-value Prediction
Experiments

• Datasets

(a) Gudang sub-district (b) Dongfeng sub-district
Experiments

- Baselines
 1) FixedTime
 2) MaxPressure
 3) CGRL
 4) Individual RL
 5) OneModel
 6) Neighbor RL
 7) GCN
 8) CoLight
Experiments

• Results

<table>
<thead>
<tr>
<th>Model</th>
<th>D_{Jinan}</th>
<th>$D_{Hangzhou}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixedtime</td>
<td>869.85</td>
<td>728.79</td>
</tr>
<tr>
<td>MaxPressure</td>
<td>361.33</td>
<td>422.15</td>
</tr>
<tr>
<td>CGLR</td>
<td>1210.7</td>
<td>1528.26</td>
</tr>
<tr>
<td>Individual RL</td>
<td>325.56</td>
<td>345.00</td>
</tr>
<tr>
<td>OneModel</td>
<td>728.63</td>
<td>394.56</td>
</tr>
<tr>
<td>Neighbor RL</td>
<td>1168.32</td>
<td>1053.45</td>
</tr>
<tr>
<td>GCN</td>
<td>625.66</td>
<td>768.43</td>
</tr>
<tr>
<td>CoLight</td>
<td>316.52</td>
<td>309.06</td>
</tr>
<tr>
<td>TSC-GNN</td>
<td>291.24</td>
<td>281.19</td>
</tr>
</tbody>
</table>
PROBABILITY GRAPH NEURAL NETWORKS FOR TRAFFIC SIGNAL CONTROL

Thank you for listening!