PRIVACY PROTECTION IN LEARNING FAIR REPRESENTATIONS

Yulu Jin, Lifeng Lai

University of California, Davis

May 2022
Overview

1. Introduction

2. The Proposed Method

3. Numerical Examples

4. Conclusion
The Internet of Things (IoT) devices.
Inference as a service

- The Internet of Things (IoT) devices.
- Inference as a service (IAS).

However, IAS brings privacy issues.
Fairness issue

- Main purpose: ensure that the inference decisions do not reflect discriminatory behavior toward certain groups or populations.
- Example: Correctional Offender Management Profiling for Alternative Sanctions (COMPAS), a software that measures the risk of a person to recommit another crime.
- Potential sources of unfairness: those arising from biases in the data and those arising from the algorithms.
- A variety of methods have been proposed that satisfy some of the fairness definitions or other new definitions depending on the application.
Our goal

- Our goal is to address the fairness and privacy issues simultaneously in the IAS design.
- Instead of sending data directly to the server, we preprocess the data through a transformation map.
- Analyze the trade-off among data utility, fairness representation and privacy protection.
- Formulate an optimization problem to find the optimal transformation map.
Outline

1 Introduction

2 The Proposed Method

3 Numerical Examples

4 Conclusion
Problem Statement and Notations

The optimization problem is

\[
\max_{P_{U|Y}} \mathcal{F}[P_{U|Y}] \triangleq I(S; U) - \beta \mathbb{E}_{Y,U} \left[f \left(\frac{p(u|y)}{p(u)} \right) \right] - \alpha I(Z; U),
\]

subject to \(p(u|y) \geq \epsilon, \forall y, \sum_u p(u|y) = 1, \forall y \in \mathcal{Y}. \)
Problem Statement and Notations

\[
\max_{P_{U|Y}} \mathcal{F}[P_{U|Y}] \triangleq I(S; U) - \beta \mathbb{E}_{Y,U} \left[f \left(\frac{P(y|u)}{P(u)} \right) \right] - \alpha I(Z; U),
\]

\[\text{s.t. } P(u|y) \geq \epsilon, \forall y, u, \sum_u P(u|y) = 1, \forall y \in \mathcal{Y},\]

where \(d(y, u) = f\left(\frac{P(y)}{P(y|u)} \right) \) and \(f \) is a continuous function defined on \((0, +\infty)\).

- The proposed framework in (1) is general with respect to the privacy metric. For \(f(\cdot) = \log(\cdot) \), we have

\[
\mathbb{E}_{Y,U}[d(y, u)] = \sum_{y,u} p(y)p(u|y) \log \left(\frac{p(u)}{p(u|y)} \right) \\
= - \sum_y p(y) D_{KL}[p(u|y) \parallel p(u)] = -I[U; Y].
\]

As the result, we will use mutual information between \(U \) and \(Y \) to measure information leakage.
Alternating optimization

Lemma 1

\[I(S; U) = I(S; Y) - \sum_{u,y} p(y)p(u|y)D_{KL}[p(s|y) \parallel p(s|u)]. \]

Then the objective function defined in (1) can be written as

\[\mathcal{F}[P_{U|Y}, P_U, P_{Z|U}, P_{S|U}] = I(S; Y) + \beta \mathbb{E}_{Y,U}[d(y, u)] \]
\[- \sum_{u,y} p(y)p(u|y)D_{KL}[p(s|y) \parallel p(s|u)] - \alpha I(Z; U). \]
Alternating optimization

Lemma 1

\[I(S; U) = I(S; Y) - \sum_{u,y} p(y)p(u|y)D_{KL}[p(s|y) \parallel p(s|u)]. \]

Then the objective function defined in (1) can be written as

\[
\mathcal{F}[P_{U|Y}, P_U, P_{Z|U}, P_{S|U}] = I(S; Y) + \beta \mathbb{E}_{Y,U}[d(y,u)] - \sum_{u,y} p(y)p(u|y)D_{KL}[p(s|y) \parallel p(s|u)] - \alpha I(Z; U).
\]

For consistency, we require the following equations to be satisfied simultaneously

\[
p(u) = \sum_y p(u|y)p(y), \forall u, \quad (3)
\]

\[
p(z|u) = \frac{\sum_y p(u|y)p(z, y)}{p(u)}, \quad (4)
\]

\[
p(s|u) = \frac{\sum_y p(u|y)p(s, y)}{p(u)}. \quad (5)
\]
Concavity

\[
\max_{P_S \mid U} \max_{P_Z \mid U} \max_{P_U} \max_{P_U \mid Y} \mathcal{F}[P_U \mid Y, P_U, P_Z \mid U, P_S \mid U].
\]

s.t. \(p(u \mid y) \geq \epsilon, \forall y, u, \sum_u p(u \mid y) = 1, \forall y, \)

\[
p(u) > 0, \forall u, \sum_u p(u) = 1, (3),
\]

\[
p(z \mid u) \geq 0, \forall u, z, \sum_z p(z \mid u) = 1, \forall u, (4),
\]

\[
p(s \mid u) \geq 0, \forall u, s, \sum_s p(s \mid u) = 1, \forall u, (5).
\]

Lemma 2 Suppose that \(f(\cdot) \) is a strictly convex function. Then for given \(P_U, P_Z \mid U, P_S \mid U \), \(\mathcal{F}[P_U \mid Y, P_U, P_Z \mid U, P_S \mid U] \) is concave in each \(P_U \mid y_i, \forall y_i \in \mathcal{Y} \). Similarly, for given \(P_U \mid Y, P_Z \mid U, P_S \mid U \), \(\mathcal{F}[P_U \mid Y, P_U, P_Z \mid U, P_S \mid U] \) is concave in \(P_U \). For given \(P_U \mid Y, P_U, P_S \mid U \), \(\mathcal{F}[P_U \mid Y, P_U, P_Z \mid U, P_S \mid U] \) is concave in \(P_Z \mid U \). For given \(P_U \mid Y, P_U, P_Z \mid U \), \(\mathcal{F}[P_U \mid Y, P_U, P_Z \mid U, P_S \mid U] \) is concave in \(P_S \mid U \).
The alternating optimization problem can be solved iteratively.
Algorithm

- In the first step, given $P_{S|U}^{(j-1)}$ and $P_{Z|U}^{(j-1)}$, we obtain $P_{U|Y}^{(j)}$ and $P_{U}^{(j)}$ by solving

$$\max_{P_{U|Y}} \max_{P_{U}} \mathcal{F}[P_{U|Y}, P_{U|P_{S|U}^{(j-1)}, P_{Z|U}^{(j-1)}}],$$

s.t. \(p(u|y) \geq \epsilon, \forall y, u, \sum_u p(u|y) = 1, \forall y, p(u) > 0, \forall u, \sum u p(u) = 1, \)
$$\delta(u) = p(u) - \sum_y p(u|y)p(y) = 0, \forall u.$$

- Apply ADMM to solve the problem.
- The optimization problem can be solved by the iterative procedure,

$$P_{U|Y}^{t+1} = \arg \max_{P_{U|Y}} \mathcal{L}[P_{U|Y_i}, P_{U|Y(i-)}, P_{U|Y(i+)}; P_U^t; \Lambda^t], \quad (6)$$

$$P_{U}^{t+1} = \arg \max_{P_U} \mathcal{L}[P_{U|Y}, P_U; \Lambda^t], \quad (7)$$

$$\Lambda^{t+1} = \Lambda^t - \rho(P_{U}^{t+1} - (P_{U|Y}^{t+1})^T P_Y). \quad (8)$$
Algorithm

- In the second step, we obtain $P_{Z|U}^{(j)}$ by the consistency equation

$$p^{(j)}(z|u) = \frac{\sum_y p^{(j)}(u|y)p(z,y)}{p^{(j)}(u)}.$$

- In the third step, obtain $P_{S|U}^{(j)}$ by solving

$$\max_{P_{S|U}} \mathcal{F}[P_{S|U}|P_{U|Y}^{(j)}, P_{U}^{(j)}, P_{Z|U}^{(j)}],$$

s.t. $p(s|u) \geq 0, \forall u, s, \sum_s p(s|u) = 1, \forall u,$ (5),

which has a simple closed form solution

$$p^{(j)}(s|u) = \frac{\sum_y p^{(j)}(u|y)p(s,y)}{p^{(j)}(u)}.$$
Algorithm 1 Design the optimal transformation map

Input:
Prior distribution P_S, P_Z and conditional distribution $P_{Y|S,Z}$.
Trade-off parameter α, β.
Converge parameter η, η_p.

Output:
A mapping $P_{U|Y}$ from $Y \in \mathcal{Y}$ to $U \in \mathcal{U}$.

Initialization:
Randomly initiate $P_{U|Y}$ and calculate $P_U, P_{Z|U}, P_{S|U}$ by (3), (4) and (5).

1: $j = 1$.
2: while $\left\| P_{S|U}^{(j)} - P_{S|U}^{(j-1)} \right\|_F > \eta$ do
3: \hspace{1em} $P_{U}^{(j+1)} = P_{U}^{(j-1)}$.
4: \hspace{1em} $P_{U|Y}^{(j+1)} = P_{U|Y}^{(j-1)}$.
5: \hspace{1em} $t = 1$.
6: while $t = 1$ or $\left\| P_{U}^{(j),t} - P_{U}^{(j),t-1} \right\|_{\mathcal{L}_2} > \eta_p$ do
7: \hspace{2em} Update $P_{U|y_t}$ by solving (6).
8: \hspace{2em} Update P_{U} by solving (7).
9: \hspace{2em} Update Λ by solving (8).
10: \hspace{2em} $t = t + 1$.
11: Update $P_{Z|U}$ by (4).
12: Update $P_{S|U}$ by (5).
13: $j = j + 1$.
14: return $P_{U|Y}$
Numerical Examples

- Suppose that $Z \in \{0, 1\}$.
- Set the prior distributions $p_z = \{\frac{1}{4}, \frac{3}{4}\}$.
- Let $|\mathcal{Y}| = 9, |\mathcal{U}| = 11$.
- The conditional distributions $P_{Y|S}(y|s, Z = 0)$ and $P_{Y|S}(y|s, Z = 1)$ are shown below.

![Conditional distributions](image.png)

Figure: Conditional distributions
Numerical Examples: relationship between \(\alpha \) and degree of fairness

- Set the privacy trade-off parameter \(\beta = 7 \).
- Randomly initialize \(P_{U|Y} \).
- Run the algorithm until it terminates for different \(\alpha \)s.
- Repeat 300 times for each \(\alpha \).

As \(\alpha \) increases, the transformed variable provides less information about the sensitive attribute.
Numerical Examples: relationship between α and information accuracy

- The information accuracy $I(S; U)$ is decreasing as α increases.
- The deduction of $I(S; U)$ is not very large.
Numerical Examples: convergence speed of the proposed algorithm

- The objective function value monotonically increases and converges as the iterative process progresses.
- Algorithm 1 converges within 30 iterations.
- GA is hard to converge. The optimal function value found by GA is always smaller.

(a) Function value of Algorithm 1
(b) Function value of GA

Figure: Function value v.s. iteration
Outline

1 Introduction

2 The Proposed Method

3 Numerical Examples

4 Conclusion
Conclusion

- We have explored the utility, fairness and privacy trade-off in IAS scenarios under sensitive environments.
- We have formulated an optimization problem to find the desirable transformation map.
- We have designed an iterative method to solve this complicated optimization problem.
- The method has better performance than GA.
- Numerical results are provided.