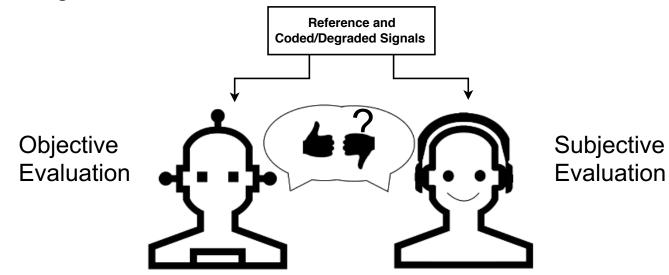


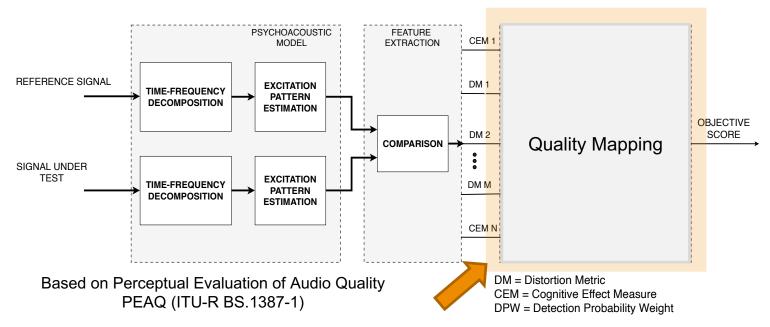
A Data-driven Cognitive Salience Model for Objective Perceptual Audio Quality Assessment

Pablo Delgado and Jürgen Herre

- Objective Quality Assessment Systems (OQAS) analyze signals to predict perceived quality degradation as reported by subjects (i.e., the subjective quality) on a listening test:
 - Can be used for audio codec selection, real-time monitoring, etc..
 - They save time and resources (as alternatives to listening tests)
 - Mostly based on a model of human perception/psychometric findings.

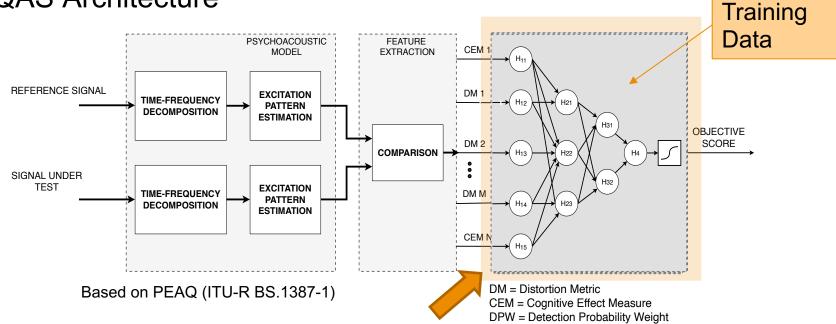


OQAS Architecture



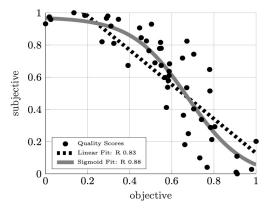
- Metric-to-quality mapping stage
 - Considered a model of auditory cognition (beyond-peripheral processes)
 - Weighted combination of different metrics into a single quality score
 - Weights reflect the importance of each metric in describing quality degradation.

OQAS Architecture



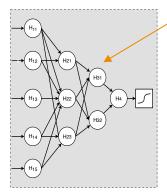
- Metric-to-quality mapping stage
 - Usually implemented as a multivariate statistical learning model (Linear Regression, Splines, SVM, ANN and others...)
 - The mapping function that links metric values to overall quality score, using subjective listening test data as target.

- The learning algorithm tasks:
 - To estimate DM-to-quality (nonlinear)
 mapping functions (due peripheral effects: threshold
 and compression effects, loudness perception, artefact
 detection, etc..)



- 2. To model interactions between features (cognitive effects: a distortion's perceived severity depends on the strength of other competing distortions.)
 - Mapping function gradients change according to the values of the input vector on a multidimensional space.

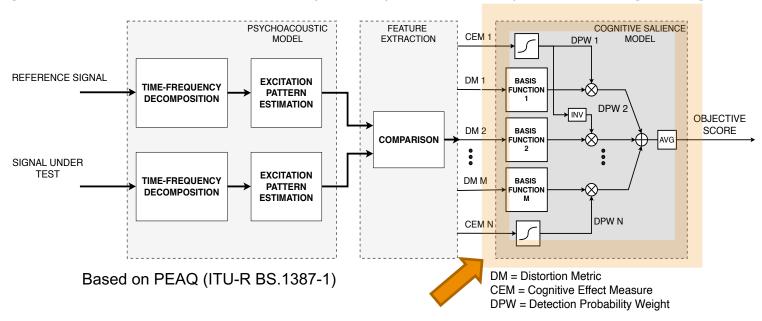
Training Data



Reliable listening test data is usually expensive and at most, a couple hundred data points are available at a time.

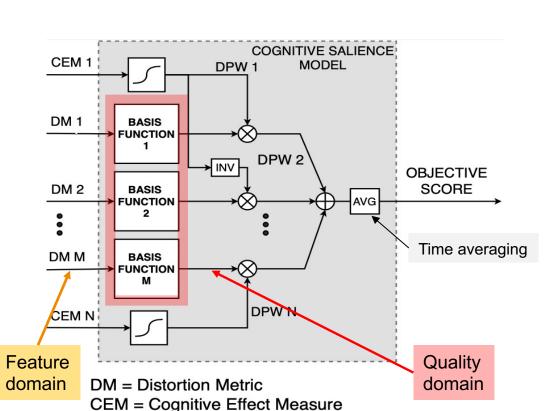
These tasks take need many free model parameters to estimate with **scarce** data.

Cognitive Salience Model (CSM) as quality mapping stage:



- Perceptually-motivated architecture:
 - 1. Pre-mapped DM-to-quality mapping Basis Functions
 - Limits in the number of feature interactions using the concept of distortion salience

DM-to-quality mapping

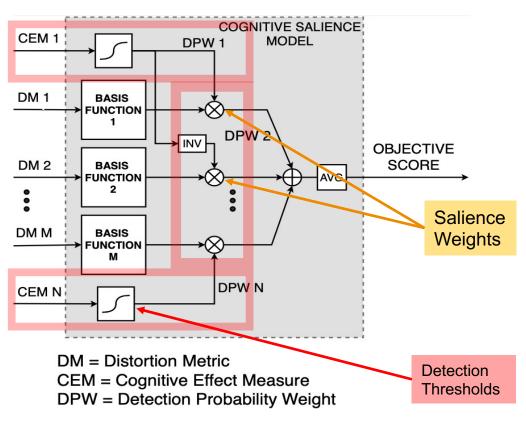


DPW = Detection Probability Weight

- Basis Functions (BF)
 - Estimated separately for each of the DM using a LT database on signals with isolated audio coding artefacts [*].
 - MUSHRA-like Method (ITU-R BS.1534)
 - The isolated audio coding artefacts minimize distortion metric interactions → favor BF independence
 - Estimation Method:
 Multivariate Adaptive
 Regressive Splines (MARS)

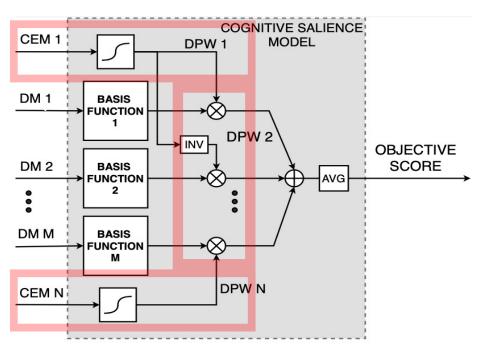
^{*} Dick et al. "Generation and Evaluation of Isolated Audio Coding Artifacts" Audio Engineering Society Convention 143, Oct. 2017

Interactions Model



- Cognitive effects can
 predict distortion salience
 → dynamically weight DM
 importance in overall quality
 according to CEM values
- Model cognitive effect detection and saturation thresholds using [0,1] sigmoids (DPW)

Data-driven model selection procedure



DM = Distortion Metric

CEM = Cognitive Effect Measure

DPW = Detection Probability Weight

- Meaningful CEM-DM interactions are selected based on the values of an <u>interaction metric</u> on an LT database
- Two sigmoid parameters per meaningful interaction (crossover point and slope) are fitted to optimize the values of the interaction metric

- Data-driven model selection
 - Interaction metric for M (correlation between CEM and DM salience):

$$\mathcal{C}_{m,n} = \left| \frac{\sum_{j=1}^{J} (S_m(j) - \overline{S}_m) (DPW_{m,n}(j) - \overline{DPW}_{m,n})}{\sqrt{\sum_{j=1}^{J} (S_m(j) - \overline{S}_m)^2} \sqrt{\sum_{j=1}^{J} (DPW_{m,n}(j) - \overline{DPW}_{m,n})^2}} \right| \xrightarrow{\text{DM M}} \text{BASIS FUNCTION M}$$

Where S_m is a salience metric defined as:

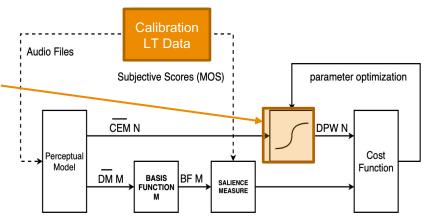
$$\mathcal{S}_m(j) = \frac{\sum_{i=1}^I (y_{ij} - \overline{y}_j) (BF_{mij} - \overline{BF}_{mj})}{\sqrt{\sum_{i=1}^I (y_{ij} - \overline{y}_j)^2} \sqrt{\sum_{i=1}^I (BF_{mij} - \overline{BF}_{mj})^2}}$$
 Per each input signal j

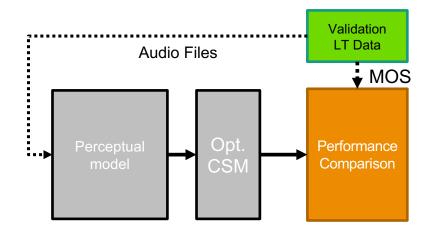
That measures **correlation** between y_{ij} , (the MOS of signal j over all treatments i) and the respective BF_m output (in the quality domain) of the DM basis function.

Experiment: Model Selection, Optimization, Validation

Two disjoint sets will be used

- The Calibration/Optimization Dataset
 - CEM/DM selection and DPW optimization
 - 7 condition/treatments
 - 168 MOS data points.
- The Validation Dataset independent LT data on which the proposed system will be evaluated
 - 9 conditions/treatments (not in the optimization dataset)
 - 216 MOS data points.
- Subjective LT Database^[*].
 - 24 signals (music, speech and mixed content), 3 codecs, bitrates: 16 to 96 kbps, > 25000 individual subj. scores pooled into MOS (MUSHRA).

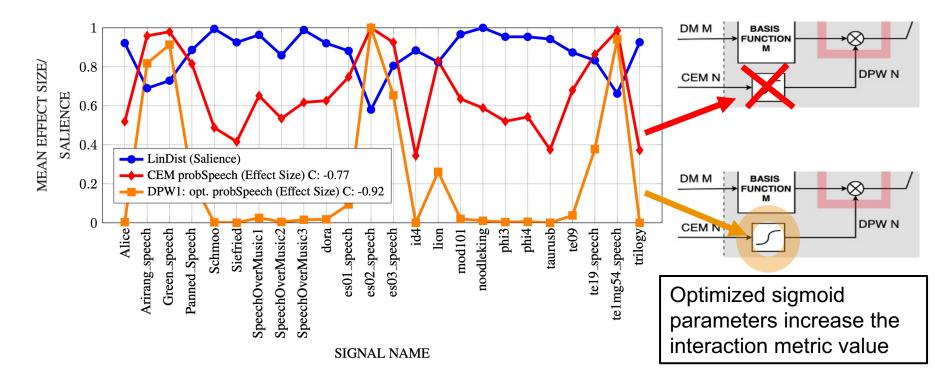




^{*} Universal Speech and Audio Coding (USAC) Verification Tests "USAC Verification Test Report N12232" ISO ISO/IEC JTC1/SC29/WG11 2011

Results: Model Selection

- Interaction optimization example
 - Linear distortion (DM) salience (blue line) is lower when the probability
 of the signal being speech-like (CEM, red line) is higher.
 - The DPWs threshold the CEM values (orange line) through a sigmoid function with two optimized parameters.



Results: Model Selection

Selected Interactions and C_m values (before and after optimization)

Weight	CEM	Target DM	C (CEM/DPW)	Equation
DPW1	probSpeech	LinDist	-0.77 / -0.92	DPW1 = 1- probSpeech_th_lin
DPW2	probSpeech	NoiseLoudness	0.67 / 0.80	DPW2 = probSpeech_th_nl
DPW3	probSpeech	MissingComponents	-0.20 / -0.37	DPW3 = 1-DPW2
DPW4	EPN	LinDist	-0.40 / -0.70	$DPW4 = 1-EPN_th_lin$
DPW5	EPN	SegmentalNMR	0.1 / 0.25	$DPW5 = (EPN_th_sgm)(1-PDEV_th_sgm)$
DPW5	PDEV	SegmentalNMR	-0.18 / -0.21	-

The weights of the distortion metrics (DPW) depend on the values of cognitive effect size metrics:

Target DMs: PEAQ Advanced MOVs (ITU-R BS.1387-1) EPN: amount of disturbance perceptual streaming (PS) [*] PDEV: informational masking of disturbances (IM) [*] probSpeech: probability of signal being speech-like [**]

- Negative interaction metric values denote decreasing salience with increasing effect size
- DPW3 selected despite lower C values, because it is complementary to DPW3
- DPW5 was combined based on PS/IM complementary relationship reported in [*]

^{*} J. Beerends "The Role of Informational Masking and Perceptual Streaming in the Measurement of Music Codec Quality" Audio Engineering Society Convention 100, May 1996

^{**} G. Fuchs "A robust speech/music discriminator for switched audio coding" EUSIPCO, Sept. 2015

Results: Validation

System Validation Performance Metrics (on unseen data)

System	\mathbf{R}	\mathbf{RMSE}^*
ViSQOL NSIM	0.82	5.6
PEAQ DI	0.69	8.1
DM + CEM	0.84	5.1
PROPOSED	0.86	4.6
PROPOSED (Opt.)	0.90	3.7

- R: objective versus subjective score correlation
- RMSE*: error of predictions outside of confidence interval (ITU-R P.1401)

System Name	Inputs	Quality Mapping	Training Data
ViSQOL NSIM (Hines et al.)	NSIM	3 rd order polynomial (ITU-T P.1401)	-
PEAQ DI (ITU-R BS.1387)	PEAQ Advanced MOV	ANN in ITU-R BS.1387	ITU DBs listed in ITU-R BS.1387
DM+CEM	Proposed MOVs and CEMs	ANN with similar settings in ITU-R BS.1387. Approach inspired in [*]	Isolated Artefacts + Optimization DB
PROPOSED	Proposed MOVs and CEMs	CSM (No DPW)	Isolated Artefacts (DM-to-quality) + Optimization DB (Interaction Selection)
PROPOSED (Opt)	Proposed MOVs and CEMs	CSM (Optimized DPW) DM M PUNCTION CEM N DPW N	Isolated Artefacts (DM-to-quality) + Optimization DB (Interaction Selection and DPW optimization)

^{*} Barbedo et al. "A New Cognitive Model for Objective Assessment of Audio Quality" J. Audio Eng. Soc. (vol. 53 p. 22-31), 2005

Summary and Conclusions

- We proposed a Cognitive Salience Model (CSM) as a featureto-quality mapping stage that explicitly models interactions of cognitive effects and distortion metric saliences in quality perception
- On a diverse set of unseen validation data, two systems using the CSM outperformed a system with a general-purpose ANN mapping stage, with the same input features and training data.
- The CSM systems also outperformed two state-of-the-art quality measurement systems.

Future Work

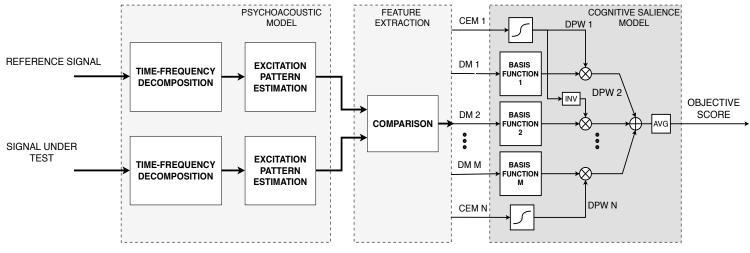
- Improve model selection criteria:
 - This study: based on strong values of the interaction metric.
 However, combined interactions improved performance despite relatively weak interaction metric values.
- Further validation on data
 - More listening test data to validate the model
 - More diverse signal degradations stemming from other applications
- Consider other beyond-peripheral effects as predictors of distortion salience in the CSM (e.g., release of masking through comodulation)
- Stereo/spatial audio: consider interactions between cognitive effects and perceived spatial image distortion metrics

Thank you for your time!

Roadmap

- Motivation
- Method
- Experiment
- Results
- Discussion
- Summary and Conclusions

OQMS Architecture

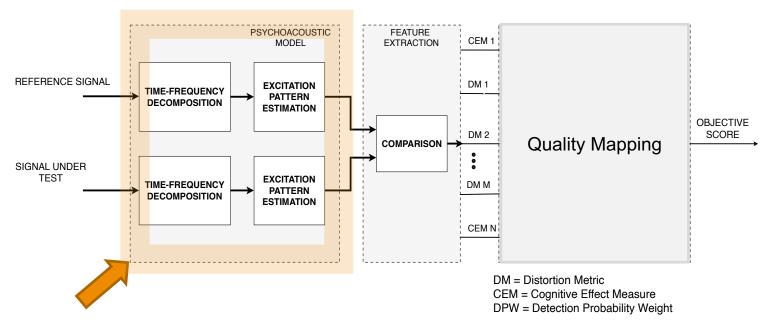


DM = Distortion Metric

CEM = Cognitive Effect Measure

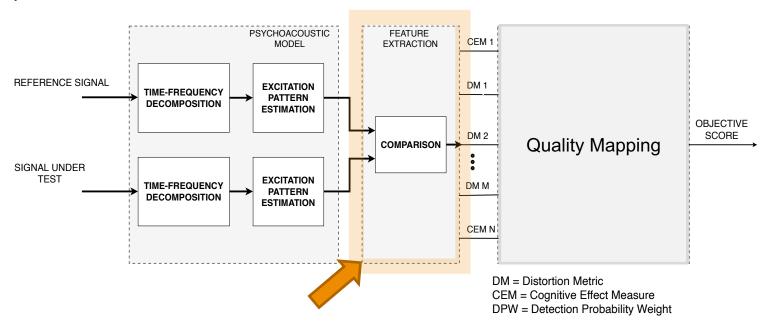
DPW = Detection Probability Weight

OQMS Architecture



- Psychophysical representation of input signals (ITU-R BS.1387-1)
 - Pre-conditioning: time alignment, DC offset removal, silence removal, etc...
 - Cochlear model: time/frequency decomposition, NL filter bank,
 - Excitation patterns: simultaneous and non-simultaneous masking models (peripheral hearing phenomena), pattern adaptation and others...

OQMS Architecture



- Feature extraction and comparison, two types of features:
 - Distortion Metrics (derived from PEAQ's Advanced Version): linear distortions, modulation disturbance, noise loudness, harmonic structure of errors
 - Extension: Cognitive Effect Metrics for informational masking (IM), perceptual streaming (PS), and probability of signal being speech-like (probSpeech)

