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Introduction

What is Matrix Completion?

The aim is to recover a low-rank matrix given only a subset
of its possibly noisy entries, e.q.,
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Let X € R be a matrix with missing entries:

o X?Lja 1t (Za])EQ
X Q]?J - { 0, otherwise

where © is a subset of the complete set of entries [n] x [n,
while the unknown entries are assumed zero.

Matrix completion refers to finding M ¢ R"*", given the
incomplete observations X with the low-rank information of
X, which can be mathematically formulated as:

11}\1}1(1 rank(M), st. Mqg=Xq

That is, among all matrices consistent with the observed
entries, we look for the one with minimum rank.
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Why Matrix Completion is Important?

It is a core problem in many applications including:

Collaborative Filtering

Image Inpainting and Restoration
System Identification

Node Localization

Genotype Imputation

VYV VVYY

It is because many real-world signals can be approximated
by a matrix whose rank is » < max{n, ns}.

Netflix Prize, whose goal was to accurately predict user
preferences with the use of a database of over 100 million
movie ratings made by 480,189 users in 17,770 films,
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which corresponds to the task of completing a matrix with
around 99% missing entries.

Alice 1
Bob 2 5
Carol 4 5

Dave 5 4
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How to Recover an Incomplete Matrix?

Directly solving the noise-free version:

n}}n rank(M), s.t. Mg=Xq

Oor noisy version:

n;}{n rank(M), s.t. |Mg— Xg|lr < ep

is difficult because the rank minimization problem is NP-
hard.

A popular and practical solution is to replace the nonconvex
rank by convex nuclear norm:
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mﬂ}n |M||., st.Mqog=Xq

or
mj\/i{n |IM||., s.t.|[|Mqg—Xqgl|lr <ep

where ||[M|. equals the sum of singular values of M.

However, complexity of nuclear norm minimization is still
high and this approach is not robust if X contains outliers.

Another popular direction which is computationally simple is
to apply low-rank matrix factorization:

min (U, V) == [(UV)o — Mol

where U € R"*" and V € R™™, Again, the Frobenius norm is
not robust against impulsive noise.
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Matrix Completion via |,-norm Factorization

To achieve outlier resistance, we robustify the matrix
factorization formulation via generalization of the Frobenius
norm to ¢,-norm where 0 < p < 2:

min U, V) =|[|(UV)q - Xal)

where || - ||, denotes the element-wise /,-norm of a matrix:

1/p

| Xall, = | > Xyl

(4,7)€€2
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Iterative |,-Regression

To ¢,-norm minimization, our first idea is to adopt the
alternating minimization strategy:

Vil = arg m‘}n |(U*V ) — Xallb

and

Urtl = arg H%}Il |(UVF)g — Xall?

where the algorithm is initialized with U, and U* represents
the estimate of U at the kth iteration.

After determining U and V, the target matrix is obtained as
M=UV,
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We now focus on solving:

mvirn L(V) =(UV)q — Xall}

for a fixed U. Note that (-)* is dropped for notational
simplicity.

Denoting the ith row of U and the jth column of V as »! and
v;,, Where u;,v; e R", i=1,--- 'n;, j=1,--- ,ny, the problem can
be rewritten as:

mln f(V Z ulv; — X[

(2,7)€S

Since f,(V)is decoupled w.r.t. v;, it is equivalent to solving
the following n, independent subproblems:
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min f,(v;) := > v =Xyl j=1, o

! i€l

where Z;={j, - ,jgt €{1,---,n} denotes the set
containing the row indices for the jth column in Q. Here, |Z;|
stands for the cardinality of Z; and in general |Z;| > r.

For example, consider X, € R**:

Xq=

O X O© X
X X X O

X © X O

For j=1, the (2,1) and (4,1) entries are observed, and thus
= {2,4}. Similarly, 7, ={1,3} and Z;={2,3,4} . Combining
the results yields 2 |Z;| = [S.
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Define Uz, € R%1*" containing the |Z;| rows indexed by Z;:

T
u;
Uz, = T
| M
and bz, = (X5, , X, ;]" € RF, then we obtain:
min f,(v,) = U0, - b

J

which is a robust linear regression in ¢,-space.

For p =2, it is a least squares (LS) problem with solution
being v;=U}b; , and the corresponding computational

complexity is O(|Z;|r*).
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For 0 < p <2, the /,-regression can be efficiently solved by
the iteratively reweighted least squares (IRLS). At the tth

iteration, the IRLS solves the following weighted LS problem:

t41

v = arg Il;l}i.l’l Wi (Uzw; — bIj)H%
J

where W' = diag{w!,--- ,w! } with

’ g

; |

Ww; = _ 1—p/2
(P +)

The ¢ is the ith element of {' = Uzp’ — bz, and € > 0. As only

one LS problem is required to solve in each IRLS iteration,
its complexity is O(|Z;|r*NrLs). Hence the total complexity for
all n, ¢,-regressions is O(|Q|r*Nigrs) due to Y72 |Z;] = 9]
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Due to the same structure in U*+! = aro min OV — Xollt

The «th row of U is updated by

. Txrk+1 T
min [/ V5 — b7 |]

where J; = {i1,--- ,ij 7} € {1,--- ,n} IS the set containing the
column indices for the ith row in Q.

Using previous example, only (1,2) entry is observed for i =1,
and thus J, =4{2} . Similarly, 7% ={1,3} , J=1{2,3} and
Jy={1,3}. Here, V%' e R™IVI contains |7;| columns indexed
by J; and b}, = [Xy;,,--- , X, )" € RV, The involved complexity
is O(|J;|r°Niris) and hence the total complexity for solving all
ny ,-regressions is O(|Q|r*Npis) due to S | T = Q).

(!
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Algorithm 1 Iterative (,-Regression for Robust Matrix Completion

Input: X . 2, and rank r
Initialize: Randomly initialize U € R %"
Determine {Z;}’2, and {J;},", according to €2.
for k. =0,1,--- do
// Fix U*. optimize V
for ) =1,2.--- .,n2 do
U?_l_l — arg 1111;111 HU:E’Uj — by, ||
end for j
// Fix V¥+1 optimize U
for:=1,2,--- ,ny do

(u! )1 — arg 1:1;11 HH?VI}TI — sz_ b
end for t
Stop 1f a termination condition 1s satisfied.
end for

Output: M = U1y Fk+]
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ADMM

Assign:

Eq=(UV), - Xq

The proposed robust formulation is then equivalent to:

min ||[Eqlff, s.t. Eq= (UV)q— Xq
UV . Eq

Its augmented Lagrangian is:

ﬁM(U, V,EQ,AQ) :HEQHg + <AQ, (UV)Q — Fq — XQ>
+LUV)o - Eq — Xall;

where Aq e R™ with [Agl;; =0 for (i,5) ¢ 2 contains |Q]
Lagrange multipliers.
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The Lagrange multiplier method aims to find a saddle point
of:

max min L, (U, V., Eq, Aq
Aq UV . Eqg M( L ’ )

The solution is obtained by applying the ADMM via the
following iterative steps:

(U’C—Fl) Vk+1) = arg r[IJHLQ ﬁu(U, V, Eé,Aé)
EiM = argmin £,(U, VFL EBo AY)

Eq

AIE:ZH _ Aé +u ((Uk+1vk:+1)gz B Eéﬂ B XQ)
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Ignoring the constant term independent of (U,V), it is shown
that

(U VA = arg %1 LU,V E; AY)

IS equivalent to:

Ak 2
min ||(UV)q — (Ef} — i +XQ)
UV m

F

which can be solved by Algorithm 1 with p=2, with a
complexity bound of O(K,|Q|r*), where K, is the required
iteration number.
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For the problem of

i+l : +1 kel k
E; = arg thin LU VI Eq,Aj)
Q

It can be simplified as:
min 5 |Eq —YQHFJFEHEQH?

where

. AF
Yéz _ ([Jk—l—l‘/k—l—l)Q + 7{2 . XQ

We only need to consider the entries indexed by 2 because
other entries of E, and Y} which are not in Q are zero.
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Defining eq, v, AL, and t} € RI% as the vectors that contain
the observed entries in E, Y§, Af, and (U"V*),, we have the
equivalent vector optimization problem:

! 2 1
min [leo =y, + - lleol;

whose solution can be written in proximity operator:

eg—'_l — proxl/@(yéﬁ
Denoting ¢; and y;, i =1,---,|Q|, as the ith entry of e and y,
and noting the separability of the problem, we solve |Q]
independent scalar problems instead:
1

| 1 : .
i) = =(e; — —leilt, 1 =1,--- |82
min g(e;) 2(6 Yi) +M!€| : €|
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For p =1, closed-form solution exists:

e; = sgn(y;) max(|y;| —1/p,0)
with a marginal complexity of O(|)).

For p < 1, the solution of the scalar minimization problem is:

1 p—1

0, iy <7 1—p)\ =7 1—p)\ =
€ = arg min g(e;), if |yi| >7 T = (p( p)) +2 (p( p))
e;€{0.t;} H 1% M

where t; = sgn(y;)r; with r;, being the unique root of:

W) =0+ Lo — |yl =0
I

y?” and the bisection method can be used.

n [(p(l —p)/ )7,
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Although computing the proximity operator for p < 1 still has
a complexity of O(|Q]), it is more complicated than p=1
because there is no closed-form solution.

On the other hand, the solution for the case of p € (1,2) can
be obtained in a similar manner. Again, there is no closed-

form solution and calculating the proximity operator for
1 <p<2 has a complexity of O(|?]) although an iterative

procedure for root finding is required.

Note that the choice of p =1 is more robust than employing
p € (1,2) and is computationally simpler.
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For
Agﬂ _ Aé”z T ((Uk+1vk:+1)g_2 . Egﬂ . XQ)
It is converted in vector form:
Agﬂ _ Ag Iy (t/éﬂ _ eé@';rl _ xg)
whose complexity is O(|Q2]).

Note that at each iteration, (UV), instead of UV is needed to
compute, whose complexity is O(|2|r) because only || inner
products {u/v,} ;o are calculated.

The algorithm is terminated when

||t6 —6’6 —mggHQ < 5, o >0
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Algorithm 2 ADMM for Robust Matrix Completion

Input: X, €2, and rank r
Initialize: e’ = 0 and \" =
for k=0.1.--- do
1) Solve LS matrix factorization

(Uic+1ka+1) —
| 2
arg 111111 H(UV 0 — (Esz —AS/p +XQ) HF

using Algorithm 1 with p = 2.
2) Compute Y5 = (UFVF) + AE /i — X and form yf, and th « (UFHIV R+ g,
3) ek—H — plO\l/,u(ySZJ
4) /\kﬂ — A+ (t“l eﬁ“ — fL‘gg)
Stop if a termination condition 1s satisfied.
end for

Output: M = UFtyk+l
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Numerical Examples

X e Rm*™ is generated by multiplying X, € R™*" and
X, € R"™"™ whose entries are standard Gaussian distribution.

45% entries of X are randomly selected as observations.
n, = 150, ny, = 300 and r = 10.
Performance measure is:

— M- X|?
RMSE(M) = , |E | - I
\ LI

CPU times for attaining RMSE <10~ of SVT, SVP, ¢, -

regression with p=2 and p=1 and ADMM with p=1 are
10.7s, 8.0s, 0.28s, 4.5s, and 0.28s, respectively.
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Original with missing data Missing data + noise

Results of image inpainting in salt-and-pepper noise
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Concluding Remarks

» Two algorithms for robust matrix completion using low-
rank factorization via ¢,-norm minimization with 0 <p <2

are devised.

» The first tackles the nonconvex factorization with missing
data by iteratively solving multiple independent linear /,-
regressions.

» The second applies ADMM in /,-space: At each iteration,

it requires solving a LS matrix factorization problem and
calculating proximity operator of the pth power of /,-

norm. The LS factorization can be efficiently solved using
linear LS regression while the proximity operator has

H. C. So Page 31



closed-form solution for p =1 or can be obtained by root
finding of a scalar nonlinear equation for p # 1.

» Both are based on alternating optimization, and have
comparable recovery performance and computational
complexity of O(K|Q|r?) where K is a fixed constant of
several hundreds to thousands.

» Their superiority over the SVT and SVP in terms of

implementation complexity, recovery capability and
outlier-robustness is demonstrated.
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