
LEARNING OPTIMAL PARAMETERS FOR BINARY SENSING
IMAGE RECONSTRUCTION ALGORITHMS

Renán A. Rojas?, Wangyu Luo†, Victor Murray?‡, and Yue M. Lu†

?Department of Electrical Engineering, Universidad de Ingenierı́a y Tecnologı́a, Lima, Perú
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I. ABSTRACT

A novel data-driven reconstruction algorithm for quantum image sen-
sors (QIS) is proposed. Observations are efficiently decoded by
modeling the reconstruction structure as a two-layer neural network,
where optimal coefficients are obtained via error backpropagation.
Our model encapsulates the structure of state-of-the-art algorithms,
yet it presents a faster alternative which adapts to input examples
without a priori statistical information. Simulations on natural and
synthetic datasets show accurate reconstructions consistent with the
state of the art, while requiring 5 times less computational cost.

II. THEORETICAL BACKGROUND

Let c = {c0, c1, . . . , cN−1}T be a set of ground-truth coefficients rep-
resenting the image to be encoded by a QIS linear array [1]. Let the
array contain M pixels covering x ∈ [0,1] in a uniform fashion. Then,
the total light exposure value for each pixel becomes:

sm = α ·
N−1∑
n=0

cn · gm−Kn,

where α is a gain factor, gm is a linear filter which depends on a
nonnegative interpolation kernel ϕQIS(x) and the box function β(x),
and K , M

N , K ∈ Z+\{1} is the spatial oversampling factor.

Photons hitting each pixel surface are denoted by realizations of a
Poisson random variable Ym. Then, the QIS observations are de-
fined as bm , Q(ym), where Q(y) is a binary quantifier with an in-
teger threshold q. Consequently, for random variable Bm , Q(Ym),
the probability distribution pbm(s) , P(Bm = bm, sm), is defined by:

p0(s) ,
q−1∑
k=0

sk

k !
e−s, p1(s) ,1−

q−1∑
k=0

sk

k !
e−s.

Figures 1 and 2 show the imaging model and a sensing example,
respectively, for the scenario of interest: ϕQIS(x) = β(x) and q = 1.

Figure 1: QIS imaging scheme for ϕQIS(x) = β(x) and q = 1.

(a) Ground-truth image c. (b) QIS binary observation b.

Figure 2: QIS imaging example for K = 4, ϕQIS(x) = β(x) and q = 1.

III. PROBLEM FORMULATION

A. Parametric Representation and Optimality Criterion
A two-layer structure comprised of a concatenation of linear-shift-
invariant systems and pointwise nonlinearities is proposed. Figure 3
shows the proposed structure and the following elements:

Figure 3: Proposed two-layer reconstruction algorithm.

(i) a downsampling process of factor K (K̂ ,
√

K in each dimen-
sion [2]), (ii) two linear, shift-invariant systems, h1,m,n,h2,m,n, and (iii)
two pointwise nonlinearities ϕ1(·), ϕ2(·), parametrized by: ϕi(z) =∑

k wi ,k · β3
( z

∆i
− k

)
, where β3 corresponds to cubic B-splines, and

∆i ∈ R is a scaling factor. Therefore, the system is characterized by:

ĉm,n =
∑

k

w2,k · β3

{
rm,n
∆2
− k

}
, rm,n =

∑
s,t

h2,s,t · qm−s,n−t ,

qm,n =
∑

k

w1,k · β3

{
pm,n
∆1
− k

}
, pm,n =

∑
s,t

h1,s,t · bK̂ m−s,K̂ n−t .

The fine-tuning of each parameter is similar to the trainable struc-
tures presented in [3, 4]: motivated by accurate QIS reconstruc-
tion schemes [1, 2], a parametrized feed-forward architecture is
adapted to a representative training set {b`,c∗`}, ` ∈ {0,L − 1}. Let
a = vec({h1,w1,h2,w2}) be the column vector formed by the system
components. Then, the system parameters are optimized by:

â = argmin
a∈A

1
L

∑
`

ε(a,b`,c
∗
`),

where A is the feasible set and ε(a,b,c∗) , 1
2||c
∗ − ĉ(a,b)||2

`2
is the

cost function. Figure 4 describes the proposed optimization scenario.

Figure 4: Proposed learning approach based on the MMSE.

B. Optimization Problem and Algorithm Initialization
Let ĉ(a) be the vectorized version of output ĉm,n for parameters a,
sorted in column-wise order. Then, â can be iteratively computed as:

a(i) = proj
A

{
a(i−1) − µ∇ε

(
a(i−1))},

where projA is an orthogonal projection operator onto set A and µ
the step size. For each cost function in (1), the gradient ∇ε(a) and
the Jacobian matrix d

daĉ(a) are expressed as:

∇ε(a) =

[
d
da

ĉ(a)

]T
(ĉ(a)− c∗),

d
da

ĉ(a) ,

[
d ĉ(a)

dh1
,
d ĉ(a)

dw1
,
d ĉ(a)

dh2
,
d ĉ(a)

dw2

]
.

Initial weights a(0) are set according to the non-iterative re-
construction algorithm [2] with a lowpass filter as denoising
method. For the 2D scenario, let L1 be re-defined as: L1

m,n ,∑K̂−1
s=0

∑K̂−1
t=0 bK̂ m+s,K̂ n+t . Then, h1,m,n is initialized as follows:

h(0)
1,m,n =

{
1, −K̂ < m < 1 ∧ −K̂ < n < 1
0, other cases

.

Similarly, h2,m,n is initialized as a Gaussian lowpass filter with stan-
dard deviation σ heuristically selected between [0.25,1]. ϕ1(z) is
initialized as the Anscombe transform T . Finally, ϕ2(z) is initialized
as the inverse Anscombe transform T −1, followed by the logarithmic

function − log(1− x
K ) and the factor K

α : ϕ(0)
2 (z) = −K

α log
(
1− T

−1(z)
K

)
.

IV. NUMERICAL RESULTS

For the synthetic scenario, c∗ is generated as a 32× 32 random ma-
trix with standard uniform distribution. Online learning is performed
on 128 training samples per iteration and a test set of 512 samples.
Figure 5 shows the cost function values and its gradient norm at
each iteration for K = 36. Their behavior reflects the reconstruc-
tion improvement along the learning procedure. Figure 6a shows the
average PSNR of the reconstructed data set for different K values.

Iteration

500 1000 1500 2000

0.1

0.15

0.2

0.25

0.3

(a) Cost function.
Iteration

500 1000 1500 2000

1

2

3

4

5

6

(b) Gradient norm.

Figure 5: Gradient descent for the synthetic scenario (K = 36).

For the natural scenario, the Cifar-10 dataset (5 · 104 training sam-
ples and 104 test samples of 32 × 32 pixels) is considered. Online
learning is performed on 128 training samples per iteration. Figure
6b shows the average PSNR of the reconstructed data set for differ-
ent K values. Also, performance on larger images is evaluated on
the Berkeley Segmentation Dataset (200 training samples and 100
test samples of 481×321 pixels). Figure 7 shows results for the pro-
posed algorithm (MMSE), the maximum likelihood estimation (MLE)
[1] and the non-iterative method (NI) with BM3D as denoising algo-
rithm [2, 5]. MMSE yields results comparable with NI, while better
preserving the scene structure.
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(a) Synthetic scenario.
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(b) Natural scenario.

Figure 6: Learning process for synthetic and natural scenarios.

Processing time is compared using Matlab-only code (1.2 GHz Intel
core i7, L2: 256K, RAM: 4G) for K = 16 and the described setup on
the Berkeley dataset. On average, MLE requires 52 ms to process
a single sample, whereas NI and MMSE require 2377 ms and 453
ms, respectively. This shows that the proposed algorithm achieves a
comparable reconstruction quality but is 5.25 times faster than NI.
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(c) MMSE output.
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Figure 7: Reconstruction accuracy for the proposed algorithm and alternative
methods on natural images (K = 16).

V. CONCLUSIONS

The proposed QIS image reconstruction algorithm obtains accurate
estimations consistent with state-of-the-art methods, while showing
a more efficient design. Modeled as a simple neural network, optimal
components are learned directly from examples without any statisti-
cal assumptions, achieving reconstructions with coherent structural
similarity 5 times faster than alternative methods, as experimentally
demonstrated. Further work will focus on adding layers in the struc-
ture while preserving its computational efficiency to explore more
complex initial settings and alternative binary sensing scenarios.
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