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l. ABSTRACT

A novel data-driven reconstruction algorithm for quantum image sen-
sors (QIS) is proposed. Observations are efficiently decoded by
modeling the reconstruction structure as a two-layer neural network,
where optimal coefficients are obtained via error backpropagation.
Our model encapsulates the structure of state-of-the-art algorithms,
yet it presents a faster alternative which adapts to input examples
without a priori statistical information. Simulations on natural and
synthetic datasets show accurate reconstructions consistent with the
state of the art, while requiring 5 times less computational cost.

ll. THEORETICAL BACKGROUND

Letc = {cy,cq,...,cn_1} " be a set of ground-truth coefficients rep-
resenting the image to be encoded by a QIS linear array [1]. Let the
array contain M pixels covering x € [0, 1] in a uniform fashion. Then,
the total light exposure value for each pixel becomes:

N—1
Sm = &~ Z Cn - Im—Kn:
n=0
where « IS a gain factor, gm Is a linear filter which depends on a
nonnegative interpolation kernel ¢q|s(X) and the box function 5(x),
and K 2 M K € 2\ {1} is the spatial oversampling factor.

Photons hitting each pixel surface are denoted by realizations of a
Poisson random variable Ym. Then, the QIS observations are de-
fined as bm = Q(ym), where Q(y) is a binary quantifier with an in-
teger threshold g. Consequently, for random variable By = Q(Ym),
the probability distribution py, (s) = P(Bm = bm, Sm), is defined by:
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Figures 1 and 2 show the imaging model and a sensing example,
respectively, for the scenario of interest: ¢qig(Xx) = 8(x) and g = 1.
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(a) Ground-truth image c.

(b) QIS binary observation b.
Figure 2: QIS imaging example for K = 4, pqis(x) = 5(x) and g = 1.

1. PROBLEM FORMULATION

A. Parametric Representation and Optimality Criterion
A two-layer structure comprised of a concatenation of linear-shift-
iInvariant systems and pointwise nonlinearities is proposed. Figure 3
shows the proposed structure and the following elements:
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Figure 3: Proposed two-layer reconstruction algorithm.

(i) a downsampling process of factor K (f( 2 /K in each dimen-
sion [2]), (ii) two linear, shift-invariant systems, hy m p, ho m p, and (iii)
two pointwise nonlinearities ¢4(-), o(:), parametrized by: ¢;(z) =
>k Wik 53(A£i — k), where 3 corresponds to cubic B-splines, and
A; € R is a scaling factor. Therefore, the system is characterized by:
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The fine-tuning of each parameter is similar to the trainable struc-
tures presented in [3, 4]: motivated by accurate QIS reconstruc-
tion schemes [1, 2], a parametrized feed-forward architecture is
adapted to a representative training set {b,,c7},¢/ € {0,L —1}. Let
a = vec({hq4,w1, hs, Ws}) be the column vector formed by the system
components. Then, the system parameters are optimized by:

. .1
a=argmin +» ¢(a, by,c)),
acA L ;

where A is the feasible set and (a, b, c*) £ j||c* — &(a,b)[|5, is the
cost function. Figure 4 describes the proposed optimization scenario.
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Figure 4: Proposed learning approach based on the MMSE.

B. Optimization Problem and Algorithm Initialization
Let €(a) be the vectorized version of output ¢m n for parameters a,
sorted in column-wise order. Then, a can be iteratively computed as:

all) = proj{a(i_1) - uVs(a(i_1))},
A

where proj 4 is an orthogonal projection operator onto set A and p

the step size. For each cost function in (1), the gradient Ve(a) and

the Jacobian matrix %“(a) are expressed as:

d . ., . |dC(a) dc(a) dc(a) dc(a)
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Initial weights a(®) are set according to the non-iterative re-
construction algorithm [2] with a lowpass filter as denoising

method. For the 2D scenario, let L' be re-defined as: L,L,?n =

K—1K-1 T _
> 50 2t-0 Pimisinsy TheN, hy m pis initialized as follows:

H0) 1, - K<m<1iA-K<n<1
L.mn 10, other cases |

Similarly, ho m, p is initialized as a Gaussian lowpass filter with stan-

dard deviation o heuristically selected between [0.25,1]. ¢4(2) is

initialized as the Anscombe transform T. Finally, po(Z) is initialized

as the inverse Anscombe transform T, followed by the logarithmic
. 0 —1
function —log(1 — ) and the factor g: 90(2 )(z) = —g log (1 —TT(Z))

IV. NUMERICAL RESULTS

For the synthetic scenario, ¢* is generated as a 32 x 32 random ma-
trix with standard uniform distribution. Online learning is performed
on 128 training samples per iteration and a test set of 512 samples.
Figure 5 shows the cost function values and its gradient norm at
each iteration for K = 36. Their behavior reflects the reconstruc-
tion improvement along the learning procedure. Figure 6a shows the
average PSNR of the reconstructed data set for different K values.
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(a) Cost function. (b) Gradient norm.

Figure 5: Gradient descent for the synthetic scenario (K = 36).

For the natural scenario, the Cifar-10 dataset (5 - 10* training sam-
ples and 10% test samples of 32 x 32 pixels) is considered. Online
learning is performed on 128 training samples per iteration. Figure
6b shows the average PSNR of the reconstructed data set for differ-
ent K values. Also, performance on larger images is evaluated on
the Berkeley Segmentation Dataset (200 training samples and 100
test samples of 481 x 321 pixels). Figure 7 shows results for the pro-
posed algorithm (MMSE), the maximum likelihood estimation (MLE)
[1] and the non-iterative method (NI) with BM3D as denoising algo-
rithm [2, 5]. MMSE vyields results comparable with NI, while better
preserving the scene structure.
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(a) Synthetic scenario. (b) Natural scenario.

Figure 6: Learning process for synthetic and natural scenarios.

Processing time is compared using Matlab-only code (1.2 GHz Intel
core i/, L2: 256K, RAM: 4G) for K = 16 and the described setup on
the Berkeley dataset. On average, MLE requires 52 ms to process
a single sample, whereas NI and MMSE require 2377 ms and 453
ms, respectively. This shows that the proposed algorithm achieves a
comparable reconstruction quality but is 5.25 times faster than NI.
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Figure 7: Reconstruction accuracy for the proposed algorithm and alternative
methods on natural images (K = 16).

V. CONCLUSIONS

The proposed QIS image reconstruction algorithm obtains accurate
estimations consistent with state-of-the-art methods, while showing
a more efficient design. Modeled as a simple neural network, optimal
components are learned directly from examples without any statisti-
cal assumptions, achieving reconstructions with coherent structural
similarity 5 times faster than alternative methods, as experimentally
demonstrated. Further work will focus on adding layers in the struc-
ture while preserving its computational efficiency to explore more
complex initial settings and alternative binary sensing scenarios.
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