

Increasingly specialized ensemble of Convolutional Neural Networks for Fine-grained Recognition

Andrea Simonelli¹, Stefano Messelodi², Francesco De Natale¹, Samuel Rota Bulo'³

Overview

1. Introduction

• Fine-grained recognition

2. State of the art

- Common issues
- Common solutions

3. Proposed method

• Increasingly specialized ensemble of Convolutional Neural Networks for Fine-grained recognition

4. Conclusions and future work

1. Introduction

Fine-grained recognition

Discriminate among classes with subtle differences

"Standard" classification task

VS

Small inter-class variations

High inter-class variations

Why is this important?

To build systems able to solve **increasingly complex** tasks

2. State of the art

Common issues

- Dataset size: fine-grained datasets are usually small

- Inter-class variations: on top of being subtle they can be very localized

Due to these major issues networks suffer of severe overfitting

Common solutions (1)

State-of-the-art methods usually **combine localization** with **classification**:

- Fully supervised methods rely on annotations like object or parts location

Annotations can be very expensive to obtain

Common solutions (2)

- Weakly supervised methods instead learn where discriminative parts are without annotations

Usually adopting multiple losses, many extra hyper-parameters requiring a complex training procedure

3. Proposed solution

Opening the black box of CNNs

A CNN can be seen as a function $g(\bullet)$ which is the **composition** of:

- Feature extractor f(•) detects features and creates a representation Z

$$f:\mathcal{I}\to\mathcal{Z}$$

- Classifier $\varphi(\bullet)$ which combines features in Z to predict output y

$$\phi:\mathcal{Z}
ightarrow\mathcal{Y}$$

Looking closer

- Feature maps encode the presence of features in specific regions
- Classifier combines and weights (pooled) features to compute the outputs

Classifier weights encode the **importance** of **each feature** for **each class**

A nearly-free localization

Zhang et al.[1] proposed to weight features preserving the spatial information

This results in **class heatmaps** where "high" pixels contain **class features**

Focus operation

Applies a **binary threshold** to class heatmaps to select a **relevant region**

The region above threshold is extracted and zoomed to find finer details

Combine CNNs in an ensemble

This focus operation is performed between consecutive CNNs

The networks achieve increasingly higher level of specialization

Results

Let's now compare the ensemble with current **state-of-the art** methods:

CUB-Birds [2] 200 species of birds ~6k training images

Method	Annotations	Accuracy
Part-RCNN	\checkmark	76.4
FCAN	√	84.7
Zhang et al.		84.7
RA-CNN		85.3
Resnet-50		85.5
DT-RAM		86.0
MA-CNN		86.5
Ours		87.2

FGVC-Aircraft [3] 100 types of airplanes ~6k training images

Method	Annotations	Accuracy	
Zhang et al.		87.3	
RA-CNN		88.2	
Resnet-50		89.0	
MA-CNN		89.9	
Ours		90.9	

Stanford Cars [4] 196 car models ~10k training images

Method	Annotations	Accuracy	
Zhang et al.		91.7	
RA-CNN		92.5	
MA-CNN		92.8	
FCAN	√	93.1	
DT-RAM		93.1	
Resnet-50		93.3	
Ours		94.1	

Ablation studies

Let's compare the accuracy of the **single networks** with the **ensemble**:

Dataset	y_1	y_2	\hat{y}_2	y_3	\hat{y}_3
CUB-200 [1]	85.5	83.4	86.8	83.6	87.2
FGVC-Air. [2]	89.0	88.6	90.6	87.3	90.9
Stanf. Cars [3]	93.3	92.7	94.0	91.1	94.1

Where \mathcal{Y}_n is the performance of the single network at the \mathbf{n}^{th} stage of the ensemble and $\hat{\mathcal{Y}}_{\text{N}}$ is the accuracy of the ensemble with N networks

The accuracy of the ensemble **always exceeds** the one of the single network

4. Conclusions and future work

Conclusions and future work

The proposed method:

- Is simple

- Achieves state-of-the-art results on three popular fine-grained datasets
- Does **not** require extra hyper-parameter tuning, training or annotations

Future work will be geared towards the definition of a recurrent model as well as to the application of this study in real-world problems

Implementation

- Architecture: Resnet-50[5] pre-trained on Imagenet[6]
- Optimization: SGD with momentum 0.9 for 270 epochs
- Losses: Cross Entropy loss
- Learning rate: initially 1e-3 later decreased by 1/10 every 100 epochs
- Regularization: dropout rate 0.7, L2 with decay 5e-4
- Input sizes: coarse input at 448x448px, others at 224x224px
- Augmentations: random {flips, resizing, crops, distortion (bright., contr., satur.)}
- Framework: implemented in Pytorch

Thank you!

References

[1] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2921–2929.

[2] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, "The Caltech-UCSD Birds-200-2011 Dataset," Tech. Rep. CNS-TR-2011-001, California Institute of Technology, 2011.

[3] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi, "Fine-grained visual classification of aircraft," Tech. Rep., 2013.

[4] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, "3d object representations for fine-grained categorization," in Proc. of the International Conference on Computer Vision Workshops (ICCVW), 2013, pp. 554–561.

[5] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[6] A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.