Decentralized optimization with non-identical sampling in presence of stragglers

Tharindu Adikari, Stark Draper

University of Toronto

ICASSP, May 2020
Setup:
- Decentralized data/computation
- Q_i: data distribution of ith worker

\[F_i(w) = \mathbb{E}_{X \sim Q_i}[f(w, X)] \]

- Want n workers to collectively minimize

\[F(w) = \frac{1}{n} \sum_{i=1}^{n} F_i(w) \]
Setup:

- Decentralized data/computation
- Q_i: data distribution of ith worker

 $F_i(w) = \mathbb{E}_{X \sim Q_i}[f(w, X)]$

- Want n workers to collectively minimize

 $F(w) = \frac{1}{n} \sum_{i=1}^{n} F_i(w)$

Assumption 1:

- Non-identical data distributions1

 e.g.: MNIST with 10 workers, worker i only has images of digit $i - 1$.

Assumption 2:

- Variable amount of work2

 e.g.: Mini-batch size 10 for stragglers (slow workers), 100 for fast workers

2 Nuwan Ferdinand et al. “Anytime minibatch: Exploiting stragglers in online distributed optimization”. In: ICLR. New Orleans, 2019
Consensus optimization through random-walk

W_k, G_k: n-column matrices

\begin{align*}
W_{k+1} &= W_k - \eta G_k \quad \text{(decoupled update)} \\
W_{k+1} &= (W_k - \eta G_k) P \quad \text{(consensus update)}
\end{align*}

\begin{itemize}
 \item n columns for n workers
 \item store \textit{weights} and \textit{gradients} ∇F_i
\end{itemize}
Consensus optimization through random-walk

\[W_k, G_k: n\text{-column matrices} \]
\[n \text{ columns for } n \text{ workers} \]
\[\text{store weights and gradients } \nabla F_i \]

\[W_{k+1} = W_k - \eta G_k \quad \text{(decoupled update)} \]
\[W_{k+1} = (W_k - \eta G_k) P \quad \text{(consensus update)} \]

\(j, l, m: \) neighbours of worker \(i \)

\[\tilde{w}^i \leftarrow \tilde{w}^i P_{ii} + \tilde{w}^j P_{ji} + \tilde{w}^l P_{li} + \tilde{w}^m P_{mi} \]
Consensus optimization through random-walk

W_k, G_k: n-column matrices

\[
W_{k+1} = W_k - \eta G_k \quad \text{(decoupled update)}
\]

\[
W_{k+1} = (W_k - \eta G_k) P \quad \text{(consensus update)}
\]

j, l, m: neighbours of worker i
\[
\tilde{w}^i \leftarrow \tilde{w}^i P_{ii} + \tilde{w}^j P_{ji} + \tilde{w}^l P_{li} + \tilde{w}^m P_{mi}
\]

$P_{i,j} > 0$ only if workers i, j connected
P - doubly stochastic matrix
Entries in $[P]^m$ converge to $\frac{1}{n}$ for large m

$W_T = W_0 [P]^{T} - \eta \sum_{k=0}^{T-1} G_k \quad \left[P \right]^{T-k}$

averaging effect on gradients
Assumption 2: Variable amount of work

- \bar{g}_i: ith column of $G = \text{avg. gradient}$ of a size $b_i (\geq 1)$ mini-batch
- Q_i: data distribution of ith worker

\[
\bar{g}_i = \frac{1}{b_i} \sum_{l=1}^{b_i} \nabla_w f(w, X_l); \quad X_l \sim Q_i
\]

In slides, assume all distributions are equally important ($\implies n\gamma_i = 1$ for the γ_i discussed in paper).
Assumption 2: Variable amount of work

- \bar{g}_i: ith column of $G = \text{avg. gradient}$ of a size $b_i \ (\geq 1)$ mini-batch
- Q_i: data distribution of ith worker

\[
\bar{g}_i = \frac{1}{b_i} \sum_{l=1}^{b_i} \nabla_w f(w, X_l); \quad X_l \sim Q_i
\]

Assumption 2: Workers complete different amounts of work

- b_i i.i.d. across workers and iterations
- $b_i \neq b_j$ in general \implies confidence of \bar{g}_i vary across i

\[
W_{k+1} = (W_k - \eta G_k)P \quad \text{(consensus update)}
\]

- Columns of G_k treated equally, irrespective of b_i \implies Equal weighting
- How should we account for the variability in confidences?

In slides, assume all distributions are equally important ($\implies n\gamma_i = 1$ for the γ_i discussed in paper).
Our proposal: Treat confident workers better!

- Give a **higher weight** to confident gradients
- \(V \): diagonal matrix, \(V_{i,i} \propto b_i \)

\[
W_{k+1} = (W_k - \eta V G_k)P
\]

Concerns:
- Columns of \(W_{k+1} \) pulled towards confident workers
- Will the oscillatory effect hurt convergence?
Confirming numerically

- Fashion-MNIST dataset: 10 classes
- Multinomial logistic regression
- 1-hidden layer neural network
- 10 workers for each class

Simulate stragglers by sampling b_i

$$b_i = \begin{cases}
60 & \text{with probability 0.8} \\
1 & \text{with probability 0.2}
\end{cases}$$

Simulation results

Cost function:
- Convex: no activation in the hidden layer
- Non-convex: ReLU in the hidden layer

Consensus:
- Approximate: 10 consensus rounds
- Perfect: All entries in P set to $\frac{1}{n}$

Experiments:
- Top: Convex, Perfect consensus
- Middle: Convex, Approx. consensus
- Bottom: Non-convex, Approx. consensus
Theoretical guarantees: Perfect consensus

- $\text{Var}(\nabla_w f(w, X)) \leq \sigma^2$: measures local variance within one worker

- $\nabla F_i = \mathbb{E}_{X \sim Q_i} [\nabla_w f(w, X)]$ and $\nabla F = \frac{1}{n} \sum_{i=1}^{n} F_i(w)$

- $\sum_{i=0}^{n} ||\nabla F_i - \nabla F||^2 \leq n^2 D$: measures global variation among all workers
Theoretical guarantees: Perfect consensus

- $\text{Var}(\nabla_w f(w, X)) \leq \sigma^2$: measures local variance within one worker

- $\nabla F_i = \mathbb{E}_{X \sim Q_i} [\nabla_w f(w, X)]$ and $\nabla F = \frac{1}{n} \sum_{i=1}^{n} F_i(w)$

- $\sum_{i=0}^{n} \| \nabla F_i - \nabla F \|^2 \leq n^2 D$: measures global variation among all workers

Main results:

- Proportional weighting converges!
- Faster than Equal weighting if:

\[
\frac{D}{\sigma^2} \leq \frac{(\mu_2 - n^2 \mu_3)}{(n^4 s^2)}
\]

- $\mu_2 = \mathbb{E}[1/b_i]$
- $\mu_3 = \mathbb{E}[b_i/(\sum_{i=1}^{n} b_i)^2]$
- $s^2 = \text{Var}(b_i/b)$

\[7/9\]
Visualizing the condition

\(g_i = \nabla_w f(w, X) \) for \(X \sim Q_i \)

\(\text{For small } \sigma, \text{ even } b_i = 1 \text{ enough to accurately estimate } \nabla F_i. \)
Conclusions/Next steps

▶ Account for the variability in confidences
▶ Proposed proportional method
▶ Sufficient conditions for faster convergence

Planned work
▶ Proof for approximate consensus.
▶ Generalize to include $b_i = 0$ case.

Thank you.