







### SEMI-SUPERVISED FEATURE EMBEDDING FOR DATA SANITIZATION IN REAL-WORLD EVENTS

(ICASSP-2021, Paper ID: 1546)

Bahram Lavi, José Nascimento, and Anderson Rocha

Reasoning for Complex Data Lab., Institute of Computing, University of Campinas, SP, Brazil

Bahram.Lavi@ic.unicamp.br



### **Forensics on Real-World Events**



### What is Image Data Sanitization?

. The goal is determining of the relevant samples from irrelevant ones upon an event of interest.

Irrelevant examples to the event



MEEEEEU DEI



### **Collected Datasets**

|                   | Event                | Taratian X/            |      | Number of images |          |           | <b>C</b>                                                                                         |
|-------------------|----------------------|------------------------|------|------------------|----------|-----------|--------------------------------------------------------------------------------------------------|
|                   | Event                | Location               | rear | Positive         | Negative | Unlabeled | Source                                                                                           |
|                   | Notre-Dame Cathedral | Paris, France          | 2019 | 1660             | 22023    | 0         | Twitter (93.2% of the images)<br>Flickr (6.8% of the images)                                     |
| "Big"-data events | Granfall Towar       | London UK              | 2017 | 1/161            | 0        | 0         | Forensic Architecture team                                                                       |
|                   | Gremen Tower         | London, OK             | 2017 | 14101            | 0        | 0         | rorensie Arenneeture team                                                                        |
|                   | Marathon Bombing     | Boston, US             | 2013 | 19092            | 0        | 0         | YouTube video frames                                                                             |
|                   | Bangladesh Fire      | Dhaka, BD              | 2019 | 125              | 125      | 709       | Twitter (96.0% of the images)<br>Flickr (4.0% of the images)                                     |
| Small-data events |                      |                        |      |                  |          |           |                                                                                                  |
|                   | National Museum      | Rio de Janeiro, Brazil | 2018 | 125              | 125      | 440       | Twitter (82.5% of the images)<br>Flickr (16.7% of the images)<br>GooglePlus (0.8% of the images) |
|                   |                      |                        | •    |                  |          |           |                                                                                                  |

### **Instances of Events**



# **Image Characterstics**

- Data-Driven Features
  - VGG16
  - InceptionV4
  - Xception
- Complementary Features
  - Gabor filters and Covariance (GBICOV) based descriptor
  - Histogram Oriented Gradiant (HOG)

| Descriptor  | Feature Dimensionality | Image input size |
|-------------|------------------------|------------------|
| VGG16       | 4096                   | $224 \times 224$ |
| InceptionV4 | 1536                   | $299 \times 299$ |
| Xception    | 2048                   | $299 \times 299$ |
| gBiCov      | 1536                   | $150 \times 150$ |
| HOG         | 648                    | $150 \times 150$ |

### **Embedding Learning method**

### Local and Global Consistency (LGC) Semi-Supervised techniq.

[D. Zhou et al. "Learning with local and global consistency" in "Advances in Neural Information Processing Systems".]



# **Experimental Setup**

- We selected  $\beta$  randomly labeled data samples for each target dataset.
- We adopted kNN to construct our affinity matrix with k=16.
- The LGC algorithm was iterated up to 300.
- We applied PCA to reduce the dimension of each feature to 128 elements.



### **Some Results**



### NotreDame Data set



### Some Results (Cont.)



**National Museum Data set** 

# Conclusions

- Training a supervised learning method for image sanitization is daunting...
- Label spreading has shown to be adequate to this problem properly propagating the labels in five events.
- The best performance accuracy in a range between 65% and 95%
- Exploring semi-supervised algorithms hold promise for the applications that are highly expensive on annotating data process

# **Future Work**

• we are currently exploring a different set of *graph-based semi-supervised techniques* that fit with complex data structure.

• Also we explore *self-supervised learning algorithms* to generate robust feature representation upon the particular structure of an event.

# Acknowledgement

This research was supported by São Paulo Research Foundation (FAPESP), under the thematic project "DéjàVu: Feature-Space-Time Coherence from Heterogeneous Data for Media Integrity Analytics and Interpretation of Events" with grant numbers 18/05668-3 and 20/02241-9.