SEMI-SUPERVISED FEATURE EMBEDDING FOR DATA SANITIZATION IN REAL-WORLD EVENTS

(ICASSP-2021, Paper ID: 1546)

Bahram Lavi, José Nascimento, and Anderson Rocha

Reasoning for Complex Data Lab.,
Institute of Computing,
University of Campinas, SP, Brazil

Bahram.Lavi@ic.unicamp.br
Forensics on Real-World Events

Which are the relevant and irrelevant samples to the event (X)?
What is Image Data Sanitization?

- The goal is determining of the relevant samples from irrelevant ones upon an event of interest.

Image examples are taken from Notre Dame Cathedral Fire Dataset.
Collected Datasets

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Year</th>
<th>Number of images</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre-Dame Cathedral</td>
<td>Paris, France</td>
<td>2019</td>
<td>1660</td>
<td>22023</td>
</tr>
<tr>
<td>Grenfell Tower</td>
<td>London, UK</td>
<td>2017</td>
<td>14161</td>
<td>0</td>
</tr>
<tr>
<td>Marathon Bombing</td>
<td>Boston, US</td>
<td>2013</td>
<td>19092</td>
<td>0</td>
</tr>
<tr>
<td>Bangladesh Fire</td>
<td>Dhaka, BD</td>
<td>2019</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>National Museum</td>
<td>Rio de Janeiro, Brazil</td>
<td>2018</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>
Instances of Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
<th>Image 5</th>
<th>Image 6</th>
<th>Image 7</th>
<th>Image 8</th>
<th>Image 9</th>
<th>Image 10</th>
<th>Image 11</th>
<th>Image 12</th>
<th>Image 13</th>
<th>Image 14</th>
<th>Image 15</th>
<th>Image 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre-Dame cathedral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grenfell Tower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marathon bombing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladesh Fire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Museum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Image Characteristics

- **Data-Driven Features**
 - VGG16
 - InceptionV4
 - Xception

- **Complementary Features**
 - Gabor filters and Covariance (GBICOV) based descriptor
 - Histogram Oriented Gradient (HOG)

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Feature Dimensionality</th>
<th>Image input size</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG16</td>
<td>4096</td>
<td>224 × 224</td>
</tr>
<tr>
<td>InceptionV4</td>
<td>1536</td>
<td>299 × 299</td>
</tr>
<tr>
<td>Xception</td>
<td>2048</td>
<td>299 × 299</td>
</tr>
<tr>
<td>gBiCov</td>
<td>1536</td>
<td>150 × 150</td>
</tr>
<tr>
<td>HOG</td>
<td>648</td>
<td>150 × 150</td>
</tr>
</tbody>
</table>
Embedding Learning method

- Local and Global Consistency (LGC) Semi-Supervised techniq.

\[f : f \rightarrow \mathbb{R}^2 \]

\[f = [f_1, \ldots, f_n]^T \cdot y \]

\[f^* = \arg\max_j f_j \]
Experimental Setup

- We selected β randomly labeled data samples for each target dataset.
- We adopted kNN to construct our affinity matrix with $k=16$.
- The LGC algorithm was iterated up to 300.
- We applied PCA to reduce the dimension of each feature to 128 elements.
Some Results

NotreDame Data set

- VGG16
- InceptionV4
- Xception
- gbicov
- gbicov_VGG16
- HOG
- gbicov_HOG_VGG16
Some Results (Cont.)

National Museum Data set

Bangladesh Fire Data set
Conclusions

- Training a supervised learning method for image sanitization is daunting…
- Label spreading has shown to be adequate to this problem properly propagating the labels in five events.
- The best performance accuracy in a range between 65% and 95%
- Exploring semi-supervised algorithms hold promise for the applications that are highly expensive on annotating data process
Future Work

- we are currently exploring a different set of *graph-based semi-supervised techniques* that fit with complex data structure.

- Also we explore *self-supervised learning algorithms* to generate robust feature representation upon the particular structure of an event.
Acknowledgement

This research was supported by São Paulo Research Foundation (FAPESP), under the thematic project "DéjàVu: Feature-Space-Time Coherence from Heterogeneous Data for Media Integrity Analytics and Interpretation of Events" with grant numbers 18/05668-3 and 20/02241-9.