Wideband Massive MIMO Channel Estimation via Sequential Atomic Norm Minimization

Stelios Stefanatos1 Mahdi Barzegar Khalilsarai2 Gerhard Wunder1

1Department of Mathematics and Computer Science
Freie Universität Berlin, Germany

2Department of Telecommunication Systems
Technische Universität Berlin, Germany

GlobalSIP 2018

Freie Universität Berlin

TU Berlin
1. Introduction and System Model

2. Wideband Massive MIMO Channel Estimation via ANM
 - Algorithm Design
 - Performance Characterization

3. Numerical Results

4. Conclusion
Outline

1. Introduction and System Model

2. Wideband Massive MIMO Channel Estimation via ANM
 - Algorithm Design
 - Performance Characterization

3. Numerical Results

4. Conclusion
Introduction

Challenges of “Massive” Communications

- Extremely large number of UEs
- Short-length transmissions
- Extremely large signal space

Critical System Design Goal

Employ channel estimation procedures that

- provide reliable estimates
- are of low complexity
- require small training overhead

In this Work:

1. A low-complexity, ANM-based channel estimator for uplink wideband mMIMO is proposed
2. MSE performance characterized by tight lower bounds
3. Close to optimal for low-to-moderate number of propagation paths
Introduction

Challenges of “Massive” Communications

- Extremely large number of UEs
- Short-length transmissions
- Extremely large signal space

Critical System Design Goal

Employ channel estimation procedures that

- provide reliable estimates
- are of low complexity
- require small training overhead

In this Work:

1. A low-complexity, ANM-based channel estimator for uplink wideband mMIMO is proposed
2. MSE performance characterized by tight lower bounds
3. Close to optimal for low-to-moderate number of propagation paths
System Model (1/2)

- Single cell, uplink
- ULA of \(M \gg 1 \) antennas at BS
- Single-antenna UE
- OFDM signaling with \(N \gg 1 \) subcarriers
- Link characterized by the unknown space-frequency transfer matrix \(H \in \mathbb{C}^{M \times N} \)
- UE transmits pilot symbols over a set \(\mathcal{N}_p \subseteq \{0, 1, \ldots, N - 1\} \) of \(N_p \) subcarriers
- BS utilizes the observations from a set \(\mathcal{M}_p \subseteq \{0, 1, \ldots, M - 1\} \) of \(M_p \) antennas

Assumption

Sets \(\mathcal{N}_p, \mathcal{M}_p \) are selected randomly and uniformly from \(\{0, 1, \ldots, N - 1\} \), \(\{0, 1, \ldots, M - 1\} \), respectively

- motivated by compressive sensing theory
- results in an robust and multiuser-fair design
- allows for tractable analysis

- \(N_p, M_p \) are design parameters to be specified
System Model (2/2)

- Observed $M_p \times N_p$ signal at the BS (all-ones pilot symbols):
 \[Y = S M_p H S_{N_p}^T + Z \]

 - $S M_p \in \mathbb{R}^{M_p \times M}$, $S_{N_p} \in \mathbb{R}^{N_p \times M}$: downsampling matrices
 - $Z \in \mathbb{C}^{M_p \times N_p}$: AWGN of variance σ^2

Receiver Task

Obtain a low-complexity and accurate estimate of the MN elements of H given the $M_p N_p < MN$ observations in Y

- Underdetermined linear system

Key concept

Exploit structural properties of the physical channel
System Model (2/2)

- Observed $M_p \times N_p$ signal at the BS (all-ones pilot symbols):
 \[
 Y = S_{M_p} H S_{N_p}^T + Z
 \]

 $S_{M_p} \in \mathbb{R}^{M_p \times M}$, $S_{N_p} \in \mathbb{R}^{N_p \times M}$: downsampling matrices

 $Z \in \mathbb{C}^{M_p \times N_p}$: AWGN of variance σ^2

Receiver Task

Obtain a low-complexity and accurate estimate of the MN elements of H given the $M_p N_p < MN$ observations in Y

- Underdetermined linear system

Key concept

Exploit structural properties of the physical channel
\[H[n; m] = \sum_{l=0}^{L-1} c_l e^{-i2\pi m \theta_l} e^{-i2\pi n \tau_l}, \quad n \in [N], \quad m \in [M] \]

- \(L \): number of paths
- \(c_l \in \mathbb{C} \): gain of \(l \)th path
- \(\theta_l \in [0, 1] \): angle of arrival (AoA) of \(l \)th path (normalized)
- \(\tau_l \in [0, 1] \): delay of \(l \)th path (normalized)

- **Channel described by** 3L ≪ MN **path parameters** \(\{(\rho_l, \theta_l, \tau_l)\}_{l=0}^{L-1} \) **in the angle-delay domain**

- **Maximum Likelihood (ML) detection of path parameters:**
 \[
 \{(\hat{c}_l, \hat{\tau}_l, \hat{\theta}_l)\}_{l=0}^{L-1} = \arg \min_{\{(c_l, \tau_l, \theta_l)\}_{l=0}^{L-1}} \left\| Y - \mathbf{S}_M \mathbf{H} \mathbf{S}_N^T \right\|^2
 \]

NP-hard problem \(\Longrightarrow \) suboptimal solutions necessary
Parametric Wideband Massive MIMO Channel Model

\[H[n; m] = \sum_{l=0}^{L-1} c_l e^{-i2\pi m n_1} e^{-i2\pi n_1 l}, n \in [N], m \in [M] \]

- \(L \): number of paths
- \(c_l \in \mathbb{C} \): gain of \(l \)th path
- \(\theta_l \in [0, 1] \): angle of arrival (AoA) of \(l \)th path (normalized)
- \(\tau_l \in [0, 1] \): delay of \(l \)th path (normalized)

- Channel described by \(3L \ll MN \) path parameters \(\{(\rho_l, \theta_l, \tau_l)\}_{l=0}^{L-1} \) in the angle-delay domain

- Maximum Likelihood (ML) detection of path parameters:

\[
\{(\hat{c}_l, \hat{\tau}_l, \hat{\theta}_l)\}_{l=0}^{L-1} = \arg \min_{\{(c_l, \tau_l, \theta_l)\}_{l=0}^{L-1}} \| Y - S_{M_p} HS_{N_p} \|_2^2
\]

NP-hard problem \(\implies \) suboptimal solutions necessary
Outline

1 Introduction and System Model

2 Wideband Massive MIMO Channel Estimation via ANM
 - Algorithm Design
 - Performance Characterization

3 Numerical Results

4 Conclusion
Channel Estimation via Atomic Norm Minimization

Define the *atom set* (manifold)

\[\mathcal{A} \triangleq \{ f_M(\theta)f_N^H(\tau) : (\theta, \tau) \in [0, 1] \times [0, 1] \} \]

- \[f_M(\theta) \triangleq [1, e^{-i2\pi\theta}, \ldots, e^{-i2\pi\theta(M-1)}]^T \] and similarly for \(f_N(\tau) \)

Rationale for this set:

\[H = \sum_{l=0}^{L-1} c_l f_M(\theta_l)f_N^H(\tau_l), \text{ i.e., } H \in \text{span}(\mathcal{A}) \]

Definition (Atomic Norm)

The atomic norm of an arbitrary matrix \(X \in \mathbb{C}^{M \times N} \) w.r.t. \(\mathcal{A} \) is

\[
\|X\|_A \triangleq \inf_{c_l \in \mathbb{C}, \theta_l, \tau_l \in [0, 1]} \left\{ \sum_l |c_l| : \left\| X = \sum_l c_l f_M(\theta_l)f_N^H(\tau_l) \right\| \right\}
\]

- Extension of the standard \(\ell_1 \)-norm

Channel Estimation via Atomic Norm Minimization

\[\hat{H} = \arg\min_{X \in \mathbb{C}^{M \times N}} \left\{ \left\| X \right\|_A : \left\| Y - S_MpXS_{Np}^T \right\| \leq \|\hat{Z}\| \right\} \]
Define the *atom set* (manifold)

\[\mathcal{A} \triangleq \left\{ f_M(\theta)f_H^N(\tau) : (\theta, \tau) \in [0, 1] \times [0, 1] \right\} \]

- \(f_M(\theta) \triangleq [1, e^{-i2\pi\theta}, \ldots, e^{-i2\pi\theta(M-1)}]^T \) and similarly for \(f_N(\tau) \)
- Rationale for this set: \(H = \sum_{l=0}^{L-1} c_l f_M(\theta_l)f_H^N(\tau_l) \), i.e., \(H \in \text{span}(\mathcal{A}) \)

Definition (Atomic Norm)

The atomic norm of an arbitrary matrix \(X \in \mathbb{C}^{M \times N} \) w.r.t. \(\mathcal{A} \) is

\[\|X\|_\mathcal{A} \triangleq \inf \left\{ \sum_l |c_l| : c_l \in \mathbb{C}, \theta_l, \tau_l \in [0, 1] \right\} \left\{ \sum_l |c_l| \right\} \left\{ \sum_l c_l f_M(\theta_l)f_H^N(\tau_l) \right\} \]

- Extension of the standard \(\ell_1 \)-norm

Channel Estimation via Atomic Norm Minimization

\[\hat{H} = \arg\min_{X \in \mathbb{C}^{M \times N}} \left\{ \|X\|_\mathcal{A} : \|Y - S_{M_p}X S_{N_p}^T \| \leq \|\hat{Z}\| \right\} \]
Theorem (Informal Statement)

Under (a) noiseless conditions and (b) sufficiently large N_p, M_p, perfect recovery of \mathbf{H} can be achieved with high probability as long as channel paths are sufficiently separated in the delay-angle domain, i.e.,

$$\min_{l \neq l'} \max \{|\theta_l - \theta_{l'}|, |\tau_l - \tau_{l'}|\} > d \approx 1 / \min \{M, N\}$$

(a) separable paths

(b) non-separable paths
Computation of $\| \cdot \|_{\mathcal{A}}$ can be formulated as an SDP problem, resulting in a convex program for obtaining \hat{H}:

$$
\begin{cases}
\text{minimize} & \frac{1}{2} \left(\text{tr} \{ T_{2D}(u) \} + t \right) \\
\hat{H} \in \mathbb{C}^{M \times N}, u \in \mathbb{C}^{MN}, t > 0 \\
\text{subject to} & \begin{pmatrix} T_{2D}(u) & \text{vec}(\hat{H}) \\ \text{vec}(\hat{H})^H & t \end{pmatrix} \succeq 0, \\
& \| Y - S_{M_p} \hat{H} S_{N_p}^T \| \leq \| \hat{Z} \|
\end{cases}
$$

- $T_{2D}(u) \in \mathbb{C}^{MN \times MN}$: block Toeplitz matrix
- Angle-delay pairs of paths can be estimated from the Vandermonde Decomposition of $T_{2D}(u)$
 - denoising gains when L is known

Complexity of solution: $O(MN)$

Impractical when $M \gg 1$ and/or $N \gg 1 \implies$ Low-complexity alternatives needed
Proposed Approach (1/2)

Basic Idea

Decouple the spatial and frequency dimensions, treating them sequentially as Multiple Measurement Vectors (MMV) estimation problems and apply ANM-based estimation to each.

(a) observation

(b) interpolate over space

(c) interpolate over frequency
Proposed Approach (2/2)

1. Spatial dimension interpolation:
 - Rewrite the observation matrix as \(Y = S_M p H S_{N_p}^T + Z \)
 - \(\triangleq H_1 \)
 - Note that \(H_1 \) can be written as \(H_1 = \sum_{l=0}^{L-1} c_l f_M(\theta_l) b_{1,l}^H, b_{1,l} \triangleq S_{N_p} f_N(\tau_l) \)
 - By ignoring the structure of \(\{b_{1,l}\} \) and noise, an estimate of \(H_1 \) can be obtained as
 \[
 \hat{H}_1 = \arg\min_{X \in \mathbb{C}^{M \times N_p}} \left\{ \|X\|_{A_{MMV_1}} \mid Y = S_M p X \right\},
 \]
 where \(A_{MMV_1} \triangleq \{ f_M(\theta)b_{1}^H, \theta \in [0, 1], b_1 \in \mathbb{C}^M, \|b_1\|^2 = 1 \} \)
 - Denoise the estimate exploiting that there are \(L \) paths

2. Frequency dimension interpolation:
 - Repeat the same approach treating now \(\hat{H}_1 \in \mathbb{C}^{M \times N_p} \) as the partial observations of the complete channel matrix with structure \(H = \sum_{l=0}^{L-1} c_l b_{2,l} f_N^H(\tau_l) \)

SDP implementation with complexity order \(O(M + N) \ll O(MN) \)
Universal MSE Bound

- Exact characterization of ANM-based estimation performance extremely difficult
 - Resort to bounds

Theorem (Universal Bound)

The per-element MSE of any unbiased estimator of \mathbf{H} is lower bounded as

$$\frac{1}{MN} \mathbb{E}(\|\hat{\mathbf{H}} - \mathbf{H}\|^2) \geq \frac{2L\sigma^2}{M_p N_p},$$

where the expectation is over the statistics of noise, N_p, M_p.

- Bound is looser than the CRLB, i.e., non-achievable, in general
- **Trade off** N_p for $M_p \implies N_p \geq L$ is not required in massive MIMO
- Scales as $O(L)$
- Bound holds with no assumptions on path separability
MSE Bound for Proposed Algorithm

The following result can serve as an approximation of the MSE performance.

Theorem

Under the assumption that the error $\hat{H}_1 - H_1$ consists of i.i.d., zero mean, Gaussian elements, the per-element MSE of any unbiased estimator of H from \hat{H}_1 that treats the rows of H as MMV, is lower bounded as

$$\frac{1}{MN} \mathbb{E}(\|\hat{H} - H\|^2) \geq \frac{L^2 \sigma^2 (1 + 2N_p)(1 + 2M)}{4MM_pN_p^2} \approx \frac{L^2 \sigma^2}{M_pN_p} \text{ (for } N_p, M \gg 1).$$

- obtained under assumptions for the spatial-interpolation estimate that do not hold
- $L/2$ times greater than the universal bound
- Scales as $O(L^2)$ instead of $O(L)$
Outline

1 Introduction and System Model

2 Wideband Massive MIMO Channel Estimation via ANM
 - Algorithm Design
 - Performance Characterization

3 Numerical Results

4 Conclusion
System Setup

- $M = 100$ ULA elements with full antenna observations ($M_p = M$)
- $N = 100$ OFDM subcarriers
 - 2D ANM-based estimation practically infeasible

- i.i.d. paths with $\theta_l \sim U[0, 1], \tau_l \sim U[0, 1/4], c_l \sim \mathcal{CN}(0, 1/L)$
 - No restrictions on the path separability

- average SNR $= 1/\sigma^2 = 10$ dB

Compare MSE of proposed algorithm with:

1. naive LS with $N_p = N$ (MSE $= \sigma^2 = 10^{-1}$)
2. LMMSE interpolator
3. conventional (oversampled) ℓ_1-norm minimization (BPDN)
4. $\mathcal{O}(N + M)$-complexity ANM-based approach (with path separability)$^1,^2$
5. universal bound

2 J.-F. Cai, W. Xu, and Y. Yang, “Large scale 2D spectral compressed sensing in continuous domain,” ICASSP 2017
MSE dependence on number of pilot subcarriers

- Results averaging over \mathbf{H}, N_p, Z
- $L = 3$ (very sparse channel)
- Proposed performs very close to optimal and outperforms other approaches
- Massive MIMO offers potential for (huge) denoising and/or training overhead gains
MSE dependence on number of paths

- $N_p = N$ (full observations)
- analysis closely follows MSE of proposed algorithm
- MSE scaling as $O(L^2)$ eventually results in worse performance than BPDN
- For low-to-moderate L, proposed approach provides significant better performance
Outline

1 Introduction and System Model

2 Wideband Massive MIMO Channel Estimation via ANM
 - Algorithm Design
 - Performance Characterization

3 Numerical Results

4 Conclusion
Conclusion and Future Work

- An ANM-based algorithm for wideband massive MIMO channel estimator was proposed.

- Performs close to optimal for low-to-moderate number of paths w/o any assumptions on path separability.

- Possible extensions:
 - time-varying channels, multi-antenna UEs
 - multi-user, multi-cell setting