SUREMap: Predicting Uncertainty in CNN-Based Image Reconstructions Using Stein’s Unbiased Risk Estimate

Kao Kitichotkul1, Christopher A. Metzler2, Frank Ong1, Gordon Wetzstein1

1Department of Electrical Engineering at Stanford University
2Department of Electrical Engineering at University of Maryland
Motivation (1)

• Convolutional neural networks (CNN) have emerged as a powerful tool for solving compressive sensing (CS) reconstruction problems.
• However, CNNs are black boxes.
Motivation (2)

• Expected mean squared error (MSE) is the gold standard for evaluating a CS reconstruction algorithm.

• Computing MSE requires the ground truth, which defeats the point of reconstruction in the first place.

\[MSE = \frac{1}{n} ||\hat{x} - x||^2 \]

Squared difference \((\hat{x} - x)^2\)
Motivation (3)

• We can estimate MSE without requiring the ground truth using Stein’s Unbiased Risk Estimate (SURE) for CS reconstruction with Approximate Message Passing (AMP) framework.

• SURE works because AMP decouples the CS reconstruction into a series of Gaussian denoising problems.

Squared difference $(\hat{x} - x)^2$

SUREMap

Estimate without x
SURE with Denoising-based AMP (D-AMP) (1)

• Problem setting: $y = Ax + \eta$, estimate x with \hat{x}.
 • $x \in \mathbb{R}^n$ ground truth, $y \in \mathbb{R}^m$ measurement, $m < n$.
 • $\eta \in \mathcal{N}(0, \sigma^2 I_m)$ Gaussian noise.

• At iteration t of D-AMP, we solve $r_t = x + \eta_t$. The solution is $f(r_t) = \hat{x}$ where f is a (possibly CNN-based) denoiser.
 • $\eta_t \in \mathcal{N}(0, \sigma_t^2 I_m)$ Gaussian noise.
SURE with Denoising-based AMP (D-AMP) (2)

• \(MSE = \frac{1}{n} \| f(r_t) - x \|^2\)

• \(SURE = \frac{1}{n} \| f(r_t) - r_t \|^2 + \frac{2\sigma_t^2}{n} \text{div}_{r_t}(f(r_t)) - \sigma_t^2\)

• Calculate the divergence using a Monte-Carlo estimate.

\[
\text{div}_{r_T}(\hat{x}) \approx \frac{1}{K} \sum_{k=1}^{K} \frac{1}{\epsilon} b_k^T (f(r_T + \epsilon b_k) - f(r_T)) \quad b_k \sim \mathcal{N}(0, I_n)
\]

• \(\mathbb{E}[MSE] = \mathbb{E}[SURE]\)
Patch-wise Calculation

- Average overlapping patches of SURE to obtain a SURE map.
- SURE map is equivalent to lowpass-filtered map of squared error.
SURE with Denoising-based VDAMP (D-VDAMP) (1)

• VDAMP (Millard et al.) extends AMP to variable density Fourier measurements as in MRI.

• Problem setting: \(y = M(Fx + \eta) \), estimate \(x \) with \(\hat{x} \).
 • \(M \) undersampling mask, \(F \) Fourier transform

• At each iteration of D-VDAMP, we solve

\[
\mathbf{r}_t = x + \eta_t \quad \eta_t \sim \mathcal{CN}(0, \mathbf{\Psi}^t \text{diag}(\tau_t) \mathbf{\Psi})
\]

to obtain \(f(r_t) = \hat{x} \).
SURE with Denoising-based VDAMP (D-VDAMP) (2)

- \(MSE = \frac{1}{n} ||f(r_t) - x||^2\)

- SURE
 \[S(\hat{x}, r_T) = ||\hat{x} - r_T||^2 - \sum_{i=1}^{n} \tau_T^{(i)} u = \Psi \text{diag} \left(\frac{1}{2} \tau_t \right)^{-1} \Psi^T r_T\]
 \[+ \frac{2}{n} \left(\text{div}_R(u) (\Re(\hat{x})) + \text{div}_S(u) (\Im(\hat{x})) \right)\]

- \(\mathbb{E}[MSE] = \mathbb{E}[SURE]\)
Experimental Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Reconstruction</th>
<th>MSE</th>
<th>SURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-AMP</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>D-VDAMP</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
Accuracy-Resolution Tradeoff

![Graph showing the tradeoff between accuracy and resolution.](image)

- **Ground truth**
- **Reconstruction**

The graph illustrates the relative error as a function of patch width, with different lines representing different values of k. The `MSE` and `SURE` values are shown for patch widths of 1 and 16.
Conclusion

• We can estimate per-pixel MSE of CS reconstruction with AMP + black-box denoiser without requiring ground truth.
• The accuracy-resolution tradeoff is a limitation to our approach.
• Usage of SURE heatmaps:
 • Inform end-users about the reliability of image reconstructions.
 • Serve as supplementary information for an artifact-removal algorithm.
 • Guide an adaptive sampling strategy.