Motivation

Goals
- Given \(G \) possible classes (or populations), classify a \(p \)-dimensional observation \(x \) accurately to its correct class.
- Reduce the number of variables (or features) without sacrificing the accuracy.

Challenge
- High-dimension (HD) low-sample size settings, where \(p \) is often several magnitudes larger than the number of observations, \(n \) (i.e., \(p \gg n \)), for example, microarray data.
- Sparsity facilitates interpretation and stabilizes estimation in the HD situations.

Problem Formulation

- Following rule assigns \(x \) to one of the \(G \) classes
 \[x \in \{ \overline{G}_1, \ldots, G_G \}, \]
 where \(g \in \{ 1, \ldots, G \} \) and \(d_g(x) \) is called the discriminant function.

Linear discriminant analysis (LDA) uses the rule (1) with
- \(d_g(x) = x^T \beta_g + c_g \) for \(g = 1, \ldots, G \), where
 \[\beta_g = \beta_g(\Sigma_g) = \Sigma_g^{-1}\mu_g \in \mathbb{R}^p \] (2)
- \(c_g = \frac{1}{2} \mu_g^T \beta_g + \ln p_g \in \mathbb{R} \) (3)

where \(\Sigma_g \) is common covariance matrix of the classes, \(\mu_g \) denotes the class mean vector (\(g = 1, \ldots, G \)) and \(p_g \) is a prior probability that \(x \) is from class \(g \).

If the \(i \)-th entry of \(\beta_g \) is zero, then the \(i \)-th feature does not contribute in the classification to \(g \)-th population.

Regularized LDA

- Training dataset \(X = \{ x_1, \ldots, x_n \} \in \mathbb{R}^{p \times n} \) is given with associated class labels \(c \in \{ 1, \ldots, G \} \).
- Unknown \(\mu_g, \Sigma_g \), and \(\alpha_g \) are estimated from \(X \).
- \(\beta_g = \beta_g(\Sigma_g) = \Sigma_g^{-1}\mu_g \) where \((n_g = \sum_{c_i = g} 1) \).

For \(g = 1, \ldots, G \), assuming observations in \(X \) are centered by the sample mean vectors of the classes
- \(\mu_g = \mu_g = \frac{1}{n_g} \sum_{x_i} x_i \) (4)
- the pooled sample covariance matrix (SCM) is given as:
 \[S = \frac{1}{n} XX^T \]

In practice, the rule (1) uses \(d_g(x) \) with \(\beta_g = S^{-1}\mu_g \) in (2). However, \(S \) is singular and is no longer invertible in the HD settings.

Thus, a regularized SCM (RSCM) \(\Sigma \) is used to avoid the singularity and to construct the empirical LDA rule.

- Such approaches are referred to as regularized LDA (see e.g., [1,2,3]) which we refer shortly as RDA.

As RSCM we use
 \[\Sigma = \alpha + (1 - \alpha) q \mathbf{I} \] (5)
where \(q = \text{Tr}(S)/p \) and \(\alpha \in [0,1] \) is a regularisation parameter that is calculated using the method proposed in [4] or using cross-validation (CV).

Next, the computational complexity of matrix inversion is reduced from \(\mathcal{O}(p^3) \) to \(\mathcal{O}(p^2) \) using the SVD-trick [1].

\[\Sigma^{-1} = U \left(\frac{\alpha}{p} D^2 + (1 - \alpha) q \mathbf{I} \right)^{-1} \frac{1}{(1 - \alpha) q} \mathbf{I} U^T + \frac{1}{(1 - \alpha) q} \] (6)
where \(\mathbf{X} = UDV^T \) and \(q = \text{Tr}(S)/p = \text{Tr}(D^2)/np \).

Compressive RDA (CRDA)

We express LDA discriminant rule in vector form:
- \(d(x) = (d_1(x), \ldots, d_G(x)) \)
- \(x^T \mathbf{B} = -\frac{1}{2} \text{diag}(\mathbf{M}^T \mathbf{B}) + \ln p \) (7)

where \(\mathbf{M} = [\mu_1, \ldots, \mu_G] \) and \(\mathbf{B} = \Sigma^{-1} \mathbf{M} \) and \(\text{diag}(\mathbf{A}) = [a_1, \ldots, a_{G-1}] \) for some matrix \(\mathbf{A} \).

The simultaneous feature selection (SFS) is obtained by using hard-thresholding operator \(H_k(\cdot, q) \).

- It is a transformation \(H_k(B, \beta) \).
- It retains the elements of the \(K \) rows of \(B \) that possess largest \(\ell_1 \) norm and set elements of the other rows to zero.

Therefore, the rule (1) uses \(d_g(x) \) with \(\beta_g = \beta_g(\Sigma_g) = \Sigma_g^{-1}\mu_g \) in (2).

K-rowsparsity of \(B \in \mathbb{R}^{G \times p} \rightarrow p-K \) features (genes) do not contribute in the classification procedure.

Conclusions

- Proposed CRDA of data in high-dimension low-sample size situations was shown to outperform competing methods in most of the cases.
- It can be a useful tool for accurate feature selection of (different) expressed features, i.e., genes in microarray studies.

References

Figures

- Figure 1: The simultaneous feature selection (SFS) algorithm.
- Figure 2: In Yodh et al. dataset (left) and after (right) the transformation \(H_k(B; \beta) \) instead of \(\beta_g \).

IEEE ICASSP 2018 • Calgary, Canada