

Improved TDNNs using Deep Kernels and Frequency Dependent Grid-RNNs

<ロ> (四) (四) (三) (三) (三) (三)

Florian Kreyssig, Chao Zhang and Phil Woodland

April 18, 2017

Cambridge University Engineering Department

Overview

- Introduction
- Models
 - Baseline TDNN
 - Deep Kernels
 - Frequency-Dependent Grid-RNN
 - Frequency-Dependent CNN (for comparison)
- Experimental Setup (MGB3 English)
- Experimental Results
- Conclusions

Introduction

Neural Network Depth

- deepening Neural Networks often yields improved performance
- structure of the TDNN restricts its depth
- we deepen the TDNN by exchanging each Kernel of the temporal convolution through a deeper structure

Frequency Dependent Grid-RNNs

- recently 2D-LSTM designs were shown to improve acoustic modelling
- we propose an efficient 2D-RNN design with frequency dependent parameters that as the front-end to a TDNN

Time-Delay Neural Networks (TDNNs) [1]

- consists of FC layers repeated at different time-steps
- parameters are shared across time
- incorporates that the same feature can occur at any time-step
- similar to 1-D (temporal) CNNs
- modern versions use shifts of more than one frame
- version from [2] is used in this work

[2] V. Peddinti et. al."A time delay neural network architecture for efficient modeling of long temporal contexts," 2015

Time-Delay Neural Networks (TDNNs)

- current TDNNs are rel. shallow since deep TDNNs need larger input contexts
- TDNN design does not incorporate the structure of the frequency domain
- this work deepens the TDNN, by deepening each convolutional kernel
- spectro-temporal variations will be modelled using a 2D-RNN as a front-end to the TDNN
- both alterations can be combined

Deep Kernels

- replace each convolution kernel in a TDNN with a Deep Kernel
- parameters are still shared across time-domain
- Double Kernel consists of two FC layers
- Resnet Kernel consists of FC layer followed by two further FC layers bypassed with a residual connection
- *linear* activation function is needed since output range of $\sigma(\cdot)$ is positive

Figure: Darker blocks are FC layers with $\sigma(\cdot)$ activation function. The white block denotes an FC layer with linear activation function.

- 2D-LSTM architectures have shown promising results [3,4]
- · LSTMs are unfolded along both the time- and frequency axis
- · allows units to influence each other within the same layer
- unfolding for one time-step at a time is expensive
- we exploit TDNN structure and unfold for 7 time-steps (time-bins)
- · features at low and high end of the frequency scale are different
- translational weight sharing along frequency axis is sub-optimal

[3] J. Li, et. al., "Exploring multidimensional LSTMs for large vocabulary ASR," 2016

[4] T. Sainath and B. Li, "Modeling time-frequency patterns with LSTM vs. convolutional architectures for LVCSR tasks," 2016

$$\begin{aligned} \mathbf{h}_{t,k}^{I} &= \mathcal{W}_{F_{1}}^{I} \mathbf{h}_{t,k}^{F} + \mathcal{W}_{F_{2}}^{I} \mathbf{h}_{t,k-1}^{F} + V_{I}^{I} \mathbf{h}_{t-1,k}^{I} + \mathbf{b}^{I} \text{ Combination Matrix} \\ \mathbf{h}_{t,k}^{F} &= \sigma \left(\mathcal{W}_{(k)}^{F} \mathbf{x}_{t,k} + V_{(k)}^{F} \mathbf{h}_{t,k-1}^{I} + \mathbf{b}_{(k)}^{F} \right) & \text{FD-RNN k} \end{aligned}$$

- **x**_{*t,k*} is the input at time step *k* and frequency step k
- linear activation in Combination Matrix for better information flow

- architecture separates information flow and feature extraction
- one or both axes can be reversed to yield bi-directional FD-RNN
- 5 frequency bins and 7 time bins for easy combination with TDNN
- frequency bins have separate weights (note colours)
- 'FD-RNN 5' (blue) is followed by the TDNN

Frequency-Dependent CNN (for comparison)

- the 7 time bins of the TDNN have width 5
- split frequency axis into 7 overlapping frequency bins
- each time-frequency bin is convolved with a set of 5x5 filters
- separate set of filters for each frequency bin
- output is 6x1 for each filter within a time-frequency bin
- reduced to 3x1 via maxpooling
- output of the convolutions within a time bin are passed to the TDNN

Experimental Setup

Data

- 55h and 275h from English Multi-Genre Broadcast (MGB) Challenge 3
- A trigram word level LM with a 63k word dictionary
- dev17b test set contains 5.5h data with reference segmentation

Systems

- All experiments were conducted by extending HTK 3.5
- 40-dim log-Mel filter bank features were used, with Δ for LSTMP
- number of parameters was kept constant by adjusting layer-sizes
- trained using cross-entropy criterion
- initialized using discriminative pre-training
- · evaluation used confusion network decoding

Results 55h: Comparing the three Kernels

· Deep Kernels yield significant improvement

Results 55h: Comparing with appending FC-layers

- · appending FC-Layers also yields improvement
- can be combined with ResNet-Kernel
- gains from ResNet-Kernels

ID	System	WER	WERR
ST ^{55h}	TDNN	32.7	_
RT ^{55h}	ResNet-TDNN	30.5	6.7%
ST ₂ ^{55h}	TDNN + 1 FC	31.9	2.4%
ST ₃ 55h	TDNN + 2 FC	30.9	5.5%
ST_4^{55h}	TDNN + 3 FC	30.5	6.7%
RT_2^{55h}	ResNet-TDNN + 3 FC	29.8	8.9%

Experimental Results 55h: Combination with Grid-RNN

- frequency-Dependent parameters are important
- bi-directional model further improves results
- bi-directional FD-Grid-RNN outperforms frequency dependent CNN

ID	System	WER	WERR
ST ^{55h}	TDNN	32.7	_
RT ^{55h}	ResNet-TDNN	30.5	6.7%
RC ^{55h}	FD-CNN-ResNet-TDNN	29.9	8.6%
RG ^{55h}	Grid-RNN-ResNet-TDNN	30.1	8.0%
RG ^{55h}	FD-Grid-RNN-ResNet-TDNN	29.6	9.5%
$RG_3^{\overline{5}5h}$	BD-FD-Grid-RNN-ResNet-TDNN	29.0	11.3%
L ^{55h}	2L-LSTMP	30.6	6.4%

Experimental Results 275h

- · alterations also give large improvements for the larger dataset
- ResNet-Kernel is more effective than appending FC layers on 275h dataset in comparison to 55h dataset

ID	System	WER	WERR
ST ₁ ^{275h}	TDNN	26.7	-
ST_4^{275h}	TDNN + 3 FC	25.7	3.7%
RT ₁ ^{275h}	ResNet-TDNN	25.0	6.4%
RT_2^{275h}	ResNet-TDNN + 3 FC	24.7	7.5%
RG ₃ ^{275h}	BD-FD-Grid-RNN-ResNet-TDNN	24.3	9.0%
L ^{275h}	2L-LSTMP	25.6	4.1%

Conclusions

- replacing convolutional kernels in a TDNN with deeper structures improves acoustic modelling (6.4% WERR)
- the best deep kernel consists of three FC layers with a ResNet connection from the output of the first the output of the third
- 2D-RNNs can be used as front-end to TDNN to effectively model spectro-temporal variations
- 2D-RNN design need not rely on LSTMs
- parameters of the 2D-RNNs should be frequency dependent
- the alterations are complimentary (9.0% WERR)

Thanks for listening!

