SOUND SOURCE LOCALIZATION IN A REVERBERANT ROOM USING HARMONIC BASED MUSIC

Lachlan Birnie, Thushara D. Abhayapala, Hanchi Chen, Prasanga N. Samarasinghe
Contact: {lachlan.birnie, thushara.abhayapala, prasanga.samarasinghe}@anu.edu.au

College of Engineering and Computer Science
The Australian National University, Canberra, Australia

Summary

- **Goal:** Localize multiple sound source positions in a reverberant real-world environment.
- **Problem:** Acoustic reflections add confusion to source position.
- **Method:** Account for reflections by incorporating a harmonic coupling model of the room transfer function.
- **Results:** Improved robustness and position estimation.
- **Conclusions:** Reflections can be helpful when used carefully.

MUSIC Subspace Localization Method

- **Reverberant Room**
 - To a sound receiver, each acoustic reflection looks like a duplicated sound source.
 - It is difficult to know which source is the original when we do not account for reflections.

Figure 1 Acoustic reflections and their secondary sound sources

- **Noise Subspace**
 - Noise subspace is found from covariance of measured sound.
 - We propose a localization method that models the direct sound and reflected sound components with spherical harmonics.
 - Reflections are modeled and incorporated with harmonic room transfer function coupling coefficients [3].

Harmonic MUSIC

- Source position is estimated with a MUSIC algorithm [1, 2].
 - Source appears as peaks in the MUSIC spectra plot.

Figure 3 Acoustic regions

Simulation

- 4 x 6 x 3 m reverberant shoebox room by image source method.
- Source positions:
 1) (0.4m, 60°, 50°)
 2) (0.6m, 120°, 30°)
 3) (0.8m, 120°, 20°)
 4) (1.0m, 60°, 50°)

Source Localization Without Modeling Reflections

- Identifies two sound sources.
- Unable to uniquely distinguish nearby sources 2 & 3.
- Cannot radically separate same angular sources 1 & 4.

Robustness Against Reflection

- Radial focusing improves with the reflection level.
- Sources are localized in highly reflective environments, H = 0.9

Proposed Localization Method

- We propose a localization method that models the direct sound and reflected sound components with spherical harmonics.

Figure 4 MUSIC spectra of proposed method

- Radial focusing confirms no sources at 0.6 m.
- Can radially separate and identify same angular sources 1 & 4.