Contributions of the Piriform Fossa of Female Speakers to Vowel Spectra

Congcong Zhang, Kiyoshi Honda, Ju Zhang, Jianguo Wei

Tianjin Key Laboratory of Cognitive Computation & its Applications

Tianjin University, China
• **Background**

- The piriform fossa is a part of the vocal tract located near the larynx.
- It offers anti-resonance to vowel spectra as a paired side branch of the vocal tract.

![Diagram of the vocal tract and piriform fossa](image)
• Background

Role of the piriform fossa

- Contributes to expressing individual vocal characteristics.
- Helps adjust voice quality by cavity deformation.

Anti-resonance: Energy absorption by the side branch
 - The piriform fossa generates anti-resonance in the narrow frequency region (4-5 kHz).

2. **Honda, et al. (2010)** built male and female vocal-tract models using MRI data and analyzed the effect of the piriform fossa on vowel spectra.
 - The female piriform fossa causes acoustic effects in the wider frequency range. Whether this is a general observation or not is uncertain.
Resonance of the lower and main parts of the vocal tract

(Honda, et al., 2010)

Lower part resonance
Vocal tract resonance

Laryngeal cavity
Piriform fossa

Main vocal tract

Two zeros due to anti-resonance of the left and right piriform fossa
Back view of the male and female vocal tract models in the water-filling experiment (Honda, et al., 2010)
Male and female spectra with and without the piriform fossa in water-filling experiment in vowel /a/
(Honda, et al., 2010)

- Male piriform fossa causes a regional effect above 4 kHz, while the female fossa generates the wider spectral change.
- The female's fossa has the greater effect on vocal-tract resonance.
3. Takemoto, et al. (2013) investigated acoustic interaction between the left and right piriform fossa using the finite-difference-time-domain (FDTD) method.

A new anti-resonance appears when one side is occluded.
• Purpose to re-examine female piriform fossa

1. To explore acoustic contributions of female piriform fossa to vowel spectra.

2. To examine acoustic interaction between the left and right cavities of the piriform fossa.

To do so, **acoustic experiment** was conducted on **three female vocal-tract models**.
Materials and MRI data

◆ Subjects
 • Three female and one male speakers of Chinese.
 • Female subject: CR, LH and SC
 • Male subject: WS (as a control)

◆ MRI Data
 • MRI vowel data
 • Synchronized scan
 • Vowels: /a/ and /i/
 • 2.0-mm slice thickness
 • MRI teeth data
 • Static scan
 • 1.0-mm slice thickness
Procedure to build 3D vocal-tract models

- Extract vocal-tract shapes from MRI data
- Convert the extracted volume into STL format
- Build a 3-mm wall outside the vocal-tract region
- Print 3D vocal-tract models
 - Software: MATLAB, Mimics.
 - Device: Formlabs laser printer (0.05-mm resolution).
Methods

Experiment

Setup for acoustic experiment on the models

- Record sound signals from vocal tracts by a condenser microphone.
- Keep 10-cm distance from the lips to the microphone.
Experiment

Acoustic recording was performed under the following four conditions:

- **NF**: Both cavities open (natural condition)
- **LF**: Left cavity filled
- **RF**: Right cavity filled
- **BF**: Both cavities filled

Acoustic Analysis

- Cepstral analysis
- Noise spectrum subtraction
Results

1. Geometry of the left and right cavities of the piriform fossa

Back views of the lower part of 3D vocal-tract models

Left-right asymmetry of the cavities
1. Geometry of the left and right cavities of the piriform fossa

Summary

a. Volumes of the fossa of WS (male) are larger than those in female’s.

b. CR's volumes are symmetric, while in those of others, the right side is larger.

c. For SC’s volumes, a marked difference in size between /a/ and /i/.
2. Anti-resonances of the piriform fossa in female vowel spectra

vowel /a/

In two conditions of ‘NF: no water' (red) and ‘BF: filled with water' (black).
2. Anti-resonances of the piriform fossa in female vowel spectra

vowel /i/

In two conditions of ‘NF: no water' (red) and ‘BF: filled with water' (black).
2. Anti-resonances of the piriform fossa in female vowel spectra

Male and female spectra with and without the piriform fossa in water-filling experiment in vowel /a/

Male:
Dips are at **4-5 kHz**
Peaks are at **5-6 kHz**

Females:
Dips are at **4-6 kHz**
Peaks are at **6-8 kHz**
3. Effect of a single cavity

Spectra with no cavities filled (red), left filled (blue) and right filled (green).

<table>
<thead>
<tr>
<th></th>
<th>CR /a/</th>
<th>LH /a/</th>
<th>WS /a/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vowel Spectra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q: When one piriform fossa is filled:
- The tendency for LH /a/ may be reasonable. But in other case, they are not.
- Not only the length and Volume but also the shape influences the effect.
3. Effect of a single cavity suggests acoustic interaction.

A common pattern of the single-cavity effect

- Two anti-resonance appear when one side is filled.
 - Smaller anti-resonance appears at lower frequencies.
 - Larger anti-resonance appears at higher frequencies.

This pattern of interaction differs from Takemoto, et al. (2013).
4. Complex acoustic interaction

A possible explanation: The piriform fossa may also interact with the laryngeal cavity.

Higher frequency region (> 4kHz) is also influenced by the laryngeal cavity (Case 1).
4. Complex acoustic interaction

A possible explanation: The piriform fossa may also interact with the laryngeal cavity.

Higher frequency region (> 4kHz) is also influenced by the laryngeal cavity (Case 2).

- Interaction among three cavities (LPF, RPF and Laryngeal cavity)
1. What were discovered.

(1) The piriform fossa of our three female subjects exhibited acoustic effects in the frequency region higher than the male case:
 • Dips are at 4-6 kHz and peaks are at 6-8 kHz.

(2) Acoustic interaction between the left and right cavities was observed with the tendency:
 • Smaller anti-resonance appears at lower frequencies.
 • Larger anti-resonance appears at higher frequencies.

2. Further study

Question remained: Why acoustic interaction between the left and right cavities are varied across speakers?
Thank you!

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61471259; No. 61573254).