The average secrecy rate is defined as

\[C_{ST} = \frac{1}{2} \int_{\gamma_{th}}^\infty \lambda_b e^{-\lambda_b \gamma} \left(\frac{(1-2)^2}{(1-2)^2 + \beta} \right) \frac{\Gamma(\frac{\beta}{2})}{\Gamma(\frac{\beta}{2} + 1)} \frac{\gamma^{\frac{\beta}{2}}}{\gamma^{\frac{\beta}{2} + 1}} d\gamma_{th} \]

where \(\gamma_{th} \) is the threshold SNR. This shows that there exists an optimal power allocation \(\alpha \) to achieve the maximal \(C_{ST} \) for a given cache user ratio \(\beta \).

Average Secrecy Rate

- The average secrecy rate is defined as \(C = \max(C_u - C_e, 0) \).
- When \(\sigma^2 \to 0 \) (interference-limited), the average secrecy rate of NT and ST are

\[C_{NT} = \frac{1}{2} \int_{\gamma_{th}}^\infty e^{-\lambda_b \gamma} \left(\frac{(1-2)^2}{(1-2)^2 + \beta} \right) \frac{\Gamma(\frac{\beta}{2})}{\Gamma(\frac{\beta}{2} + 1)} \frac{\gamma^{\frac{\beta}{2}}}{\gamma^{\frac{\beta}{2} + 1}} d\gamma_{th} \]

Secrecy Coverage Probability

The secrecy coverage probability is defined as \(P = P_c(\gamma > R_e) \). When \(\sigma^2 \to 0 \), the secrecy coverage probability of NT and ST are

\[P_{NT} = \int_{\gamma_{th}}^\infty e^{-\lambda_b \gamma} \left(\frac{(1-2)^2}{(1-2)^2 + \beta} \right) \frac{\Gamma(\frac{\beta}{2})}{\Gamma(\frac{\beta}{2} + 1)} \frac{\gamma^{\frac{\beta}{2}}}{\gamma^{\frac{\beta}{2} + 1}} d\gamma_{th} \]

\[P_{ST} = \int_{\gamma_{th}}^\infty e^{-\lambda_b \gamma} \left(\frac{(1-2)^2}{(1-2)^2 + \beta} \right) \frac{\Gamma(\frac{\beta}{2})}{\Gamma(\frac{\beta}{2} + 1)} \frac{\gamma^{\frac{\beta}{2}}}{\gamma^{\frac{\beta}{2} + 1}} d\gamma_{th} \]

where \(\gamma_{th} \) is the threshold SNR. This shows that there exists an optimal power allocation \(\alpha \) to achieve the maximal \(C_{ST} \) for a given cache user ratio \(\beta \).

File Access Protocol

- **Self-offloading:** Cache-enabled user \(u_0 \) requests content from \(M \) which can be served by their local storage.
- **Secure-transmission:** Cache-enabled user \(u_0 \) requests content from \(F/M \) which is served by the nearest BS in secure-transmission.
- **Normal-transmission:** Cache-untenabled user \(u_0 \) requests content from \(F \) which is served by the nearest BS in normal-transmission.

\[t_i = \sqrt{\beta e X_i} \]

Caching

- Improve signal strength
- Cancel received interference

Physical Layer Solutions

- Artificial noise
- Cooperative relays

Questions

- How to utilize cache ability to improve transmission secrecy?
- How to measure cache ability in secrecy improving?

System Model

Network and Caching Model

- A cache-enabled 3-tier HetNet: BSs \(\Phi_b \), users \(\Phi_u \) and Eves \(\Phi_e \).
- A database: \(N \) files with equal length \(F = \{ f_1, f_2, \ldots, f_N \} \).
- Request probability: \(\nu_j \), Zipf distribution.
- BSs can access all the files in \(F \) without counting costs.
- Only \(\alpha \) part of users have cached the files \(M = \{ f_1, f_2, \ldots, f_M \} \) from \(F \).
- Cache hit ratio \(\delta = \sum_{i=1}^M \nu_i \).

\[\lambda_b e^{-\lambda_b \gamma} \left(\frac{(1-2)^2}{(1-2)^2 + \beta} \right) \frac{\Gamma(\frac{\beta}{2})}{\Gamma(\frac{\beta}{2} + 1)} \frac{\gamma^{\frac{\beta}{2}}}{\gamma^{\frac{\beta}{2} + 1}} d\gamma_{th} \]

Transmission Scheme Analysis

Normal Transmission (NT)

- Consider a non-colluding wiretap scenario where each Eve individually overhears the data transmission from \(u_0 \) to \(b_j \).
- The received SINR of \(u_0 \) and an arbitrary Eve \(e_j \) can be written as \((\nu_{u_0}, \nu_{e_j}) \).

\[\text{SNIR}_i = \frac{P | h_{b_j} |^2 d^{\beta}}{\sum_{k \in \Phi_b \setminus \{b_j\}} | h_{k} |^2 d^{\beta} + \sigma^2} \]

Secure Transmission (ST)

- Since the pre-cached signal \(x_{u_0} \) is known perfectly at \(u_0 \). And assume that the perfect channel state information is fully available at cache-enabled users. The received SINR of \(u_0 \) is

\[\text{SNIR}_i = \frac{\theta P | h_{b_j} |^2 d^{\beta}}{\sum_{k \in \Phi_b \setminus \{b_j\}} | h_{k} |^2 d^{\beta} + \sum_{k \in \Phi_e} | h_{k} |^2 d^{\beta} + \sigma^2} \]

The (1-\(\theta \)) part of interference from \(\Phi_u \) can be cancelled.

The transmitted signal \(x_{u_0} \) can introduce an extra interference to greatly restrict the \(e_j \). The received SINR of an arbitrary Eve \(e_j \) in \(\Phi_e \) can be written as

\[\text{SNIR}_{e_j} = \frac{\theta P | h_{b_j} |^2 d^{\beta}}{(1-\theta) P | h_{b_j} |^2 d^{\beta} + \sum_{k \in \Phi_b \setminus \{b_j\}} | h_{k} |^2 d^{\beta} + \sum_{k \in \Phi_e} | h_{k} |^2 d^{\beta} + \sigma^2} \]

It has the form of \(\frac{\theta x}{x + (1-\theta) \sigma} \)