IEEE GlobalSIP@ORLANDO 15th December, 2015

Edge Preserving Multiscale Image Decomposition with Customized **Domain Transform Filters**

Tokyo University of Agriculture and Technology

Saho Yagyu

Akie Sakiyama Yuichi Tanaka

OUTLINE

- **O** introduction
- Oconventional method
 - domain transform filter
- **€** objective and proposed method
- O experiment
- **O** conclusion

INTRODUCTION

- edge has important information of signals and images
- many edge preserving smoothing filters have been proposed
 - Anisotropic diffusion [1]
 - Bilateral filter [2]
 - Guided filter [3]
 - Weighted least squares [4]
 - L0 smoothing [5]
 - Domain transform filter [6]

P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intel., vol. 12, no. 7, pp. 629 - 639, Jul. 1990.
 C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Proc. IEEE Int. Conf. Computer Vision, pp. 839 - 846, Jan. 1998.
 K. He, J. Sun, and X. Tang, "Guided Image Filtering," in Proc. European Conf. Computer Vision, pp. 1-14, 2010.
 Z. Farbman, R. Fattal, D. Lischinski and R. Szeliski, "Edge-preserving decompositions for multi-scale tone and detail manipulation," ACM Trans, Graph., vol. 27, no. 3. p67, 2008.
 L. Xu, C. Lu, Y. Xu, and J. Jia, "Image smoothing via L0 gradient minimization," ACM Trans. Graph., vol. 30, no. 6, p. 174, Dec. 2011.
 E. S. L. Gastal and M. M. Oliveira, "Domain transform for edge-aware image and video processing," in Proc. ACM SIGGRAPH, vol. 30, no. 4, p. 69, 2011.

Normalized Convolution (NC)

• the average of signal is calculated within r from τ_i in Ω_{ω}

$$y_i = \frac{\sum_{k \in \Omega_{\omega}} \delta\{|\tau_i - \tau_k| \le r\} u_i}{\sum_{k \in \Omega_{\omega}} \delta\{|\tau_i - \tau_k| \le r\}}$$

 δ : boolean function

 Ω_{μ}

3. inverse domain trasform

equispaced signal is obtained

$$t_{i+1} - t_i := 1 \qquad t_i \in \Omega$$

OUTLINE

- **O** introduction
- Oconventional method
 - domain transform
- **€** objective and proposed method
- O experiment
- **G** conclusion

OBJECTIVE

original DTF

good points

- fast edge preserving smoothing method
- can be used to many image processing applications

bad points

in the case of noisy input...

it is difficult to calculate appropriate distance between signals

▲ it is highly sensitive to noise ▲

OBJECTIVE

multiscale DTF

▲ it is highly sensitive to noise ▲

to be robust to noise

multiscale image decomposition method based on the DTF

- uses a similar structure to Laplacian pyramid [6]
- designs optimal filter based on DTF
- realizes several image processing applications

[6] Burt, Peter J., and Edward H. Adelson. "The Laplacian pyramid as a compact image code." IEEE Trans. Commun., on 31.4 (1983): 532-540.

PYRAMID STRUCTURE

PYRAMID STRUCTURE

objective function: arg min(||Gc - Fu||₂² + \lambda ||Ac||₂²)
c = (G^TG + \lambda A^TA)⁻¹G^TFu
c = Hu
optimized filter: H = (G^TG + \lambda A^TA)⁻¹G^TF

PYRAMID STRUCTURE

process of the proposed method

input image \rightarrow analysis \rightarrow thresholding \rightarrow systhesis \rightarrow output

OUTLINE

O introduction

- **O** conventional method
 - domain transform

Objective and proposed method

- O experiment
- **O** conclusion

EXPERIMENT

applications

- edge preserving smoothing
 - noise free images
 - noisy images
- detail enhancement

EXPERIMENT

conditions

- conventional method: original DTF
 - DTF: RF / NC
 - parameter sigma: controlling smoothing strength
- proposed method: multiscale DTF
 - DTF: RF / NC
 - parameter: controlling thresholding strength

EDGE PRESERVING SMOOTHING 17

noise-free image

original RF original NC

multiscale RF multiscale NC

EDGE PRESERVING SMOOTHING

noisy image

$$\sigma = 20$$

original RF 24.00 dB original NC 23.76 dB

multiscale RF multiscale NC 27.54 dB 27.11 dB

EDGE PRESERVING SMOOTHING

19

PSNR Comparison [dB]

method	original RF	original NC	WLS [3]	L0 [2]	multiscal RF	multiscal NC
Pepper	24.00	23.76	26.45	27.13	27.54	27.11
Lena	25.68	25.77	28.34	27.12	28.58	29.06
House	26.62	26.41	28.34	29.61	29.48	29.86
Milkdrop	26.02	26.21	28.12	28.27	28.52	28.83

DETAIL ENHANCEMENT

input signal

1st/2nd levels

original NC

1st/2nd/3rd levels

20

1st level

2nd level

CONCLUSION

design of domain transform robust to noise

proposed method

multiscale image decomposition method based on the domain transform filter

result

- edge preserving smoothing
- \rightarrow satisfactory even in the noisy environments
- detail enhancement
- \rightarrow unique results due to multiscale decomposition

OTHER APPLICATIONS

22

input image

pencil drawing

stylization

REFERENCE

[1] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. Mach. Intel., vol. 12, no. 7, pp. 629 - 639, Jul. 1990.

[2] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Proc. IEEE Int. Conf. Computer Vision, pp. 839 - 846, Jan. 1998.

[3] L. Xu, C. Lu, Y. Xu, and J. Jia, "Image smoothing via L0 gradient minimization," ACM Trans. Graph., vol. 30, no. 6, p. 174, Dec. 2011.

[4] D. Min, S. Choi, J. Lu, B. Ham, K. SohnMin, and M. Do, "Fast global image smoothing based on weighted least squares," IEEE Trans. Image Process., vol. 23, no. 12, pp. 5638 - 5653, Dec. 2014.

[5] E. S. L. Gastal and M. M. Oliveira, "Domain transform for edge-aware image and video processing," in Proc. ACM SIGGRAPH, vol. 30, no. 4, p. 69, Sep. 2011.

[6] Burt, Peter J., and Edward H. Adelson. "The Laplacian pyramid as a compact image code." IEEE Trans. Commun., on 31.4 (1983): 532-540.