Channel Estimation Using Joint Dictionary Learning in FDD Massive MIMO Systems

Yacong Ding and Bhaskar Rao

Department of Electrical and Computer Engineering University of California, San Diego

December 14, 2015

Outline

- Motivation
- Previous Work

2 Joint Uplink/Downlink Dictionary Learning

- Joint Sparse Representation
- Joint Compressed Channel Estimation

3 Simulation

- Simulation Setting
- Low Dimension Representation
- Compressed Channel Estimation

Conclusion

Introduction

- Acquiring downlink channel information h^d at base station (CSIT):
 - TDD: easy, FDD: difficult.
 - BS has N antennas, user has 1 antennas: $h^d, h^u \in \mathbb{C}^{N imes 1}$

	Training	Feedback
TDD: $h^d = h^u$, uplink training	$T^u \geq 1$	No
(UE: $\phi \in \mathbb{C}^{1 imes T^u}$, BS: $Y^u = h^u \phi + n^u$)		
FDD: $h^d \neq h^u$, downlink training	$T^d \ge N$	$\propto N$
(BS: $\Phi \in \mathbb{C}^{T^d imes N}$, UE: $Y^d = \Phi h^d + n^d$)		

- Acquiring downlink channel information h^d at base station (CSIT):
 - TDD: easy, FDD: difficult.
 - BS has N antennas, user has 1 antennas: $h^d, h^u \in \mathbb{C}^{N imes 1}$

	Training	Feedback
TDD: $h^d = h^u$, uplink training	$T^u \ge 1$	No
(UE: $\phi \in \mathbb{C}^{1 imes T^u}$, BS: $Y^u = h^u \phi + n^u$)		
FDD: $h^d \neq h^u$, downlink training	$T^d \ge N$	$\propto N$
(BS: $\Phi \in \mathbb{C}^{T^d \times N}$, UE: $Y^d = \Phi h^d + n^d$)		

- FDD is widely employed in existing communication systems:
 - Beneficial if directly adopt Massive MIMO to FDD.

- Acquiring downlink channel information h^d at base station (CSIT):
 - TDD: easy, FDD: difficult.
 - BS has N antennas, user has 1 antennas: $h^d, h^u \in \mathbb{C}^{N imes 1}$

	Training	Feedback
TDD: $h^d = h^u$, uplink training	$T^u \ge 1$	No
(UE: $\phi \in \mathbb{C}^{1 \times T^{u}}$, BS: $Y^{u} = h^{u}\phi + n^{u}$)		
FDD: $h^d \neq h^u$, downlink training	$T^d \ge N$	$\propto N$
(BS: $\Phi \in \mathbb{C}^{T^d \times N}$, UE: $Y^d = \Phi h^d + n^d$)		

- FDD is widely employed in existing communication systems:
 - Beneficial if directly adopt Massive MIMO to FDD.
- FDD Downlink training: $Y^d = \Phi h^d + n^d$, $\Phi \in \mathbb{C}^{T^d \times N}$:
 - To be practical: T^d small.

- Acquiring downlink channel information h^d at base station (CSIT):
 - TDD: easy, FDD: difficult.
 - BS has N antennas, user has 1 antennas: $h^d, h^u \in \mathbb{C}^{N imes 1}$

	Training	Feedback
TDD: $h^d = h^u$, uplink training	$T^u \ge 1$	No
(UE: $\phi \in \mathbb{C}^{1 \times T^{u}}$, BS: $Y^{u} = h^{u}\phi + n^{u}$)		
FDD: $h^d \neq h^u$, downlink training	$T^d \ge N$	$\propto N$
(BS: $\Phi \in \mathbb{C}^{T^d \times N}$, UE: $Y^d = \Phi h^d + n^d$)		

- FDD is widely employed in existing communication systems:
 - Beneficial if directly adopt Massive MIMO to FDD.
- FDD Downlink training: $Y^d = \Phi h^d + n^d, \Phi \in \mathbb{C}^{T^d \times N}$:
 - To be practical: T^d small.
 - $T^d < N$: underdetermined inverse problem, infinite solutions.

- Acquiring downlink channel information h^d at base station (CSIT):
 - TDD: easy, FDD: difficult.
 - BS has N antennas, user has 1 antennas: $h^d, h^u \in \mathbb{C}^{N imes 1}$

	Training	Feedback
TDD: $h^d = h^u$, uplink training	$T^u \ge 1$	No
(UE: $\phi \in \mathbb{C}^{1 \times T^{u}}$, BS: $Y^{u} = h^{u}\phi + n^{u}$)		
FDD: $h^d \neq h^u$, downlink training	$T^d \ge N$	$\propto N$
(BS: $\Phi \in \mathbb{C}^{T^d \times N}$, UE: $Y^d = \Phi h^d + n^d$)		

- FDD is widely employed in existing communication systems:
 - Beneficial if directly adopt Massive MIMO to FDD.
- FDD Downlink training: $Y^d = \Phi h^d + n^d, \Phi \in \mathbb{C}^{T^d \times N}$:
 - To be practical: T^d small.
 - $T^d < N$: underdetermined inverse problem, infinite solutions.
- Explore channel structure to regularize the problem?

- Acquiring downlink channel information h^d at base station (CSIT):
 - TDD: easy, FDD: difficult.
 - BS has N antennas, user has 1 antennas: $h^d, h^u \in \mathbb{C}^{N imes 1}$

	Training	Feedback
TDD: $h^d = h^u$, uplink training	$T^u \ge 1$	No
(UE: $\phi \in \mathbb{C}^{1 \times T^{u}}$, BS: $Y^{u} = h^{u}\phi + n^{u}$)		
FDD: $h^d \neq h^u$, downlink training	$T^d \ge N$	$\propto N$
(BS: $\Phi \in \mathbb{C}^{T^d \times N}$, UE: $Y^d = \Phi h^d + n^d$)		

- FDD is widely employed in existing communication systems:
 - Beneficial if directly adopt Massive MIMO to FDD.
- FDD Downlink training: $Y^d = \Phi h^d + n^d$, $\Phi \in \mathbb{C}^{T^d \times N}$:
 - To be practical: T^d small.
 - $T^d < N$: underdetermined inverse problem, infinite solutions.
- Explore channel structure to regularize the problem?
 - Sparse channel structure: compressive sensing.

- Low dimensional representation of high dimensional signal:
 - Find a Ψ such that $h^d = \Psi \beta^d, \|\beta^d\|_0 < N$.

- Low dimensional representation of high dimensional signal:
 - Find a Ψ such that $h^d = \Psi \beta^d, \|\beta^d\|_0 < N$.
 - Downlink training: $Y^d = \Phi h^d + n^d = \Phi \Psi \beta^d + n^d$

- Low dimensional representation of high dimensional signal:
 - Find a Ψ such that $h^d = \Psi \beta^d, \|\beta^d\|_0 < N$.
 - Downlink training: $Y^d = \Phi h^d + n^d = \Phi \Psi \beta^d + n^d$
- Apply compressive sensing algorithm to estimate the sparse coefficient β^d.

Compressed Channel Estimation : $\hat{\beta}^{d} = \arg\min_{\beta^{d}} \|\beta^{d}\|_{0} \text{ subject to } \|Y^{d} - \Phi\Psi\beta^{d}\|_{2}^{2} \leq \sigma^{2}$ (1) $\hat{h}^{d} = \Psi\hat{\beta}^{d}$

- Low dimensional representation of high dimensional signal:
 - Find a Ψ such that $h^d = \Psi \beta^d, \|\beta^d\|_0 < N$.
 - Downlink training: $Y^d = \Phi h^d + n^d = \Phi \Psi \beta^d + n^d$
- Apply compressive sensing algorithm to estimate the sparse coefficient β^d.

Compressed Channel Estimation : $\hat{\beta}^{d} = \arg\min_{\beta^{d}} \|\beta^{d}\|_{0} \text{ subject to } \|Y^{d} - \Phi\Psi\beta^{d}\|_{2}^{2} \leq \sigma^{2}$ (1) $\hat{h}^{d} = \Psi\hat{\beta}^{d}$

• Many practical algorithms. **Measurements**: $T^d \propto \|\beta^d\|_0 < N$

- Low dimensional representation of high dimensional signal:
 - Find a Ψ such that $h^d = \Psi \beta^d, \|\beta^d\|_0 < N$.
 - Downlink training: $Y^d = \Phi h^d + n^d = \Phi \Psi \beta^d + n^d$
- Apply compressive sensing algorithm to estimate the sparse coefficient β^d.

Compressed Channel Estimation : $\hat{\beta}^{d} = \arg\min_{\beta^{d}} \|\beta^{d}\|_{0} \text{ subject to } \|Y^{d} - \Phi\Psi\beta^{d}\|_{2}^{2} \leq \sigma^{2}$ (1) $\hat{h}^{d} = \Psi\hat{\beta}^{d}$

- Many practical algorithms. **Measurements**: $T^d \propto \|\beta^d\|_0 < N$
- Core requirement: find Ψ .

Sparse Channel Representation

The existing work that applies compressed channel estimation use **orthogonal** DFT basis as Ψ :

- Agree with array manifold using ULA.
- Infinite number of antennas, limited scattering environment.

The existing work that applies compressed channel estimation use **orthogonal** DFT basis as Ψ :

- Agree with array manifold using ULA.
- Infinite number of antennas, limited scattering environment.

For common channels models, such as 3GPP SCM channels:

• High
$$\|\beta^d\|_0$$
: $h^d = \Psi_{DFT}\beta^d$

• $T^d \propto \|\beta^d\|_0$: lose benefits of compressive sensing

The existing work that applies compressed channel estimation use **orthogonal** DFT basis as Ψ :

- Agree with array manifold using ULA.
- Infinite number of antennas, limited scattering environment.

For common channels models, such as 3GPP SCM channels:

- High $\|\beta^d\|_0$: $h^d = \Psi_{DFT}\beta^d$
- $\mathcal{T}^d \propto \|\beta^d\|_0$: lose benefits of compressive sensing

One easy better choice is overcomplete DFT matrix: redundancy in basis

- Only applicable to ULA.
- Can not adapt to **specific** cell characteristics: urban, rural, hills, etc.

The existing work that applies compressed channel estimation use **orthogonal** DFT basis as Ψ :

- Agree with array manifold using ULA.
- Infinite number of antennas, limited scattering environment.

For common channels models, such as 3GPP SCM channels:

- High $\|\beta^d\|_0$: $h^d = \Psi_{DFT}\beta^d$
- $\mathcal{T}^d \propto \|\beta^d\|_0$: lose benefits of compressive sensing

One easy better choice is overcomplete DFT matrix: redundancy in basis

- Only applicable to ULA.
- Can not adapt to **specific** cell characteristics: urban, rural, hills, etc.

How can we design a dictionary/basis such that:

The existing work that applies compressed channel estimation use **orthogonal** DFT basis as Ψ :

- Agree with array manifold using ULA.
- Infinite number of antennas, limited scattering environment.

For common channels models, such as 3GPP SCM channels:

- High $\|\beta^d\|_0$: $h^d = \Psi_{DFT}\beta^d$
- $\mathcal{T}^d \propto \|\beta^d\|_0$: lose benefits of compressive sensing

One easy better choice is overcomplete DFT matrix: redundancy in basis

- Only applicable to ULA.
- Can not adapt to **specific** cell characteristics: urban, rural, hills, etc.

How can we design a dictionary/basis such that:

• Adapt to specific cell properties (antenna, environment).

The existing work that applies compressed channel estimation use **orthogonal** DFT basis as Ψ :

- Agree with array manifold using ULA.
- Infinite number of antennas, limited scattering environment.

For common channels models, such as 3GPP SCM channels:

- High $\|\beta^d\|_0$: $h^d = \Psi_{DFT}\beta^d$
- $\mathcal{T}^d \propto \|\beta^d\|_0$: lose benefits of compressive sensing

One easy better choice is overcomplete DFT matrix: redundancy in basis

- Only applicable to ULA.
- Can not adapt to **specific** cell characteristics: urban, rural, hills, etc.

How can we design a dictionary/basis such that:

- Adapt to specific cell properties (antenna, environment).
- Lead to **sparse** representation.

Yacong Ding and Bhaskar Rao (ECE UCSD)

• Rather than using **predefined** dictionary/basis, **learn** cell specific D^d from data:

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - **Overcomplete:** $D^d \in \mathbb{C}^{N \times M}, N < M$

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - Overcomplete: $D^d \in \mathbb{C}^{N \times M}, N < M$
 - Fit model to data: $h_i^d \approx D^d \beta_i^d, i = 1, \dots, L$

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - **Overcomplete:** $D^d \in \mathbb{C}^{N \times M}, N < M$
 - Fit model to data: $h_i^d \approx D^d \beta_i^d, i = 1, \dots, L$
 - Encourage sparsity: $\|\beta_i^d\|_0 \ll M, \forall i$.

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - **Overcomplete:** $D^d \in \mathbb{C}^{N \times M}, N < M$
 - Fit model to data: $h_i^d \approx D^d \beta_i^d, i = 1, \dots, L$
 - Encourage sparsity: $\|\beta_i^d\|_0 \ll M, \forall i$.
- What data can be utilized?

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - **Overcomplete:** $D^d \in \mathbb{C}^{N \times M}, N < M$
 - Fit model to data: $h_i^d \approx D^d \beta_i^d, i = 1, \dots, L$
 - Encourage sparsity: $\|\beta_i^d\|_0 \ll M, \forall i$.
- What data can be utilized?
 - Channel measurements: collected within a specific cell.

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - **Overcomplete:** $D^d \in \mathbb{C}^{N \times M}, N < M$
 - Fit model to data: $h_i^d \approx D^d \beta_i^d, i = 1, \dots, L$
 - Encourage sparsity: $\|\beta_i^d\|_0 \ll M, \forall i$.
- What data can be utilized?
 - Channel measurements: collected within a specific cell.
 - Effect of **environment** on the transmitted electromagnetic waves represented at **antennas**.

- Rather than using predefined dictionary/basis, learn cell specific D^d from data:
 - **Overcomplete:** $D^d \in \mathbb{C}^{N \times M}, N < M$
 - Fit model to data: $h_i^d \approx D^d \beta_i^d, i = 1, \dots, L$
 - Encourage sparsity: $\|\beta_i^d\|_0 \ll M, \forall i$.
- What data can be utilized?
 - Channel measurements: collected within a specific cell.
 - Effect of **environment** on the transmitted electromagnetic waves represented at **antennas**.
 - Big data paradigm in wireless communication.

• Combine data fitting and sparsity encouragement, dictionary learning can be formulated:

$$\min_{D^{d},\beta_{1}^{d},...,\beta_{L}^{d}} \lambda \|H^{d} - D^{d}B^{d}\|_{F}^{2} + \sum_{i=1}^{L} \|\beta_{i}^{d}\|_{0}$$
(2)
where $H^{d} = [h_{1}^{d},...,h_{L}^{d}] \quad B^{d} = [\beta_{1}^{d},...,\beta_{L}^{d}].$

• Combine data fitting and sparsity encouragement, dictionary learning can be formulated:

$$\min_{D^{d},\beta_{1}^{d},...,\beta_{L}^{d}} \lambda \|H^{d} - D^{d}B^{d}\|_{F}^{2} + \sum_{i=1}^{L} \|\beta_{i}^{d}\|_{0}$$
(2)
$$H^{d} = [h_{1}^{d},...,h_{L}^{d}] \quad B^{d} = [\beta_{1}^{d},...,\beta_{L}^{d}].$$

- Benefits of dictionary learning and compressed channel estimation:
 - Applicable to any antenna configurations: no assumed structure.

where

• Combine data fitting and sparsity encouragement, dictionary learning can be formulated:

$$\min_{D^{d},\beta_{1}^{d},...,\beta_{L}^{d}} \lambda \|H^{d} - D^{d}B^{d}\|_{F}^{2} + \sum_{i=1}^{L} \|\beta_{i}^{d}\|_{0}$$
(2)
where $H^{d} = [h_{1}^{d},...,h_{L}^{d}] \quad B^{d} = [\beta_{1}^{d},...,\beta_{L}^{d}].$

- Benefits of dictionary learning and compressed channel estimation:
 - Applicable to any antenna configurations: no assumed structure.
 - Robust to any irregularities: mismatched antennas, non-plane wave.

• Combine data fitting and sparsity encouragement, dictionary learning can be formulated:

$$\min_{D^{d},\beta_{1}^{d},...,\beta_{L}^{d}} \lambda \|H^{d} - D^{d}B^{d}\|_{F}^{2} + \sum_{i=1}^{L} \|\beta_{i}^{d}\|_{0}$$
(2)
where $H^{d} = [h_{1}^{d},...,h_{L}^{d}] \quad B^{d} = [\beta_{1}^{d},...,\beta_{L}^{d}].$

- Benefits of dictionary learning and compressed channel estimation:
 - Applicable to any antenna configurations: no assumed structure.
 - Robust to any irregularities: mismatched antennas, non-plane wave.
 - Training and feedback overhead: proportional to channel sparsity S.

Joint Uplink/Downlink Dictionary Learning and Compressed Channel Estimation

In compressive sensing, more measurements are always better:

- More information about the underlying sparse coefficients.
- Better recovery performance.

In compressive sensing, more measurements are always better:

- More information about the underlying sparse coefficients.
- Better recovery performance.

In Massive MIMO, it implies T^d to be larger:

- Larger training and feedback overhead.
- Waste of resources.

In compressive sensing, more measurements are always better:

- More information about the underlying sparse coefficients.
- Better recovery performance.

In Massive MIMO, it implies T^d to be larger:

- Larger training and feedback overhead.
- Waste of resources.

Is it possible to have more information about the underlying sparse coefficient, but without need of larger T^d ?

In compressive sensing, more measurements are always better:

- More information about the underlying sparse coefficients.
- Better recovery performance.

In Massive MIMO, it implies T^d to be larger:

- Larger training and feedback overhead.
- Waste of resources.

Is it possible to have more information about the underlying sparse coefficient, but without need of larger T^d ?

From uplink channel h^u :

In compressive sensing, more measurements are always better:

- More information about the underlying sparse coefficients.
- Better recovery performance.

In Massive MIMO, it implies T^d to be larger:

- Larger training and feedback overhead.
- Waste of resources.

Is it possible to have more information about the underlying sparse coefficient, but without need of larger T^d ?

From uplink channel h^u :

- Easy to obtain: $T^u \ge 1$.
- Common sparse channel structure between h^d and h^u .

Joint Uplink/Downlink Channel Representation

• Similar to $h^d = D^d \beta^d$: $h^u = D^u \beta^u$.

Joint Uplink/Downlink Channel Representation

• Similar to
$$h^d = D^d \beta^d$$
 : $h^u = D^u \beta^u$.

• Duplex distance not large: **similar scattering effect** for uplink and downlink transmission.

Figure 1: Uplink/Downlink Channel Model

Joint Uplink/Downlink Channel Representation

• Similar to
$$h^d = D^d \beta^d$$
 : $h^u = D^u \beta^u$.

• Duplex distance not large: **similar scattering effect** for uplink and downlink transmission.

Figure 1: Uplink/Downlink Channel Model

• In our model, equivalently to assume $\chi(\beta^u) = \chi(\beta^d)$, where $\chi(\beta) = \{i | \beta(i) \neq 0\}$ denotes the set of locations of nonzero entries in β .

Joint UL/DL Dictionary Learning

Joint Uplink/Downlink Dictionary Learning

$$\min_{\substack{D^{u}, B^{u}, D^{d}, B^{d}}} \|H^{u} - D^{u}B^{u}\|_{F}^{2} + \|H^{d} - D^{d}B^{d}\|_{F}^{2}$$
subject to $\|\beta_{i}^{u}\|_{0} = \|\beta_{i}^{d}\|_{0} \leq T_{0}, \ \chi(\beta_{i}^{u}) = \chi(\beta_{i}^{d}) \ \forall i$

$$(3)$$

Joint UL/DL Dictionary Learning

Joint Uplink/Downlink Dictionary Learning

$$\min_{\substack{D^{u}, B^{u}, D^{d}, B^{d}}} \|H^{u} - D^{u}B^{u}\|_{F}^{2} + \|H^{d} - D^{d}B^{d}\|_{F}^{2}$$
subject to $\|\beta_{i}^{u}\|_{0} = \|\beta_{i}^{d}\|_{0} \leq T_{0}, \ \chi(\beta_{i}^{u}) = \chi(\beta_{i}^{d}) \ \forall i$

$$(3)$$

Joint Uplink/Downlink Sparse Representation

$$h^{u} \approx D^{u}\beta^{u}, h^{d} \approx D^{d}\beta^{d}$$

$$\|\beta_{i}^{u}\|_{0} = \|\beta_{i}^{d}\|_{0} \leq T_{0}, \ \chi(\beta_{i}^{u}) = \chi(\beta_{i}^{d}) \ \forall i$$

$$(4)$$

Joint UL/DL Dictionary Learning

Joint Uplink/Downlink Dictionary Learning

$$\min_{\substack{D^{u}, B^{u}, D^{d}, B^{d}}} \|H^{u} - D^{u}B^{u}\|_{F}^{2} + \|H^{d} - D^{d}B^{d}\|_{F}^{2}$$
subject to $\|\beta_{i}^{u}\|_{0} = \|\beta_{i}^{d}\|_{0} \leq T_{0}, \ \chi(\beta_{i}^{u}) = \chi(\beta_{i}^{d}) \ \forall i$

$$(3)$$

Joint Uplink/Downlink Sparse Representation

$$h^{u} \approx D^{u}\beta^{u}, h^{d} \approx D^{d}\beta^{d}$$
$$\|\beta_{i}^{u}\|_{0} = \|\beta_{i}^{d}\|_{0} \leq T_{0}, \ \chi(\beta_{i}^{u}) = \chi(\beta_{i}^{d}) \ \forall i$$

Joint Uplink/Downlink Compressed Channel Estimation :

arg min

$$_{\beta^{u},\beta^{d}} \| Y^{u} - \phi^{u} D^{u} \beta^{u} \|_{2}^{2} + \| Y^{d} - \Phi^{d} D^{d} \beta^{d} \|_{2}^{2}$$
(5)

subject to $\chi(\beta^{u}) = \chi(\beta^{d}), \ \|\beta^{u}\|_{0} = \|\beta^{d}\|_{0} \leq T_{0}$

(4)

• Joint dictionary learning:

- Regularize the learning process.
- Better performance when underlying generative model satisfies joint sparsity.

- Joint dictionary learning:
 - Regularize the learning process.
 - Better performance when underlying generative model satisfies joint sparsity.
- Joint channel estimation:
 - Better recovery: additional measurements from uplink training.

- Joint dictionary learning:
 - Regularize the learning process.
 - Better performance when underlying generative model satisfies joint sparsity.
- Joint channel estimation:
 - Better recovery: additional measurements from uplink training.
- In other words, we can further decrease downlink training duration
 T^d with the same performance.

Numerical Results

• Apply 3GPP SCM: far scatterer clusters and local scatterer clusters.

- Apply 3GPP SCM: far scatterer clusters and local scatterer clusters.
- Each channel snapshot:
 - 4 local SC: locations change with user.
 - 2 far SC: fixed locations.

- Apply 3GPP SCM: far scatterer clusters and local scatterer clusters.
- Each channel snapshot:
 - 4 local SC: locations change with user.
 - 2 far SC: fixed locations.
- Training samples: 50000 channel snapshots uniformly sampled in the cell.

- Apply 3GPP SCM: far scatterer clusters and local scatterer clusters.
- Each channel snapshot:
 - 4 local SC: locations change with user.
 - 2 far SC: fixed locations.
- Training samples: 50000 channel snapshots uniformly sampled in the cell.
- 100 antennas at base station and 1 antenna at user. Apply uniform linear array.

- Apply 3GPP SCM: far scatterer clusters and local scatterer clusters.
- Each channel snapshot:
 - 4 local SC: locations change with user.
 - 2 far SC: fixed locations.
- Training samples: 50000 channel snapshots uniformly sampled in the cell.
- 100 antennas at base station and 1 antenna at user. Apply uniform linear array.
- Pair of uplink/downlink channel: same angles, different amplitudes and phases.

Low Dimension Representation

Dictionary Learning in Channel Representation

Constrain T_0 atoms to be used. Compare $MSE(E||h^d - \hat{h}^d||_2^2)$ between h^d and $\hat{h}^d = D^d \beta^d$. $||h^d||_2 = 1$.

Figure 2: MSE comparison.

GlobalSIP 2015

Dictionary Learning in Joint UL/DL Channel Estimation

Compare MSE between h^d and $\hat{h}^d = D^d \hat{\beta}^d$. $\hat{\beta}^d = OMP(Y^d, \Phi, D^d)$, or $\hat{\beta}^d = jointOMP(Y^d, \Phi, D^d; Y^u, \phi, D^u)$. D^d, D^u : learned dictionary.

• In this work we propose a novel downlink channel estimation algorithm in FDD Massive MIMO systems.

- In this work we propose a novel downlink channel estimation algorithm in FDD Massive MIMO systems.
- Joint uplink/downlink dictionary learning can explore similar scattering effect between the uplink and downlink channel, leading to a joint sparse representation.

- In this work we propose a novel downlink channel estimation algorithm in FDD Massive MIMO systems.
- Joint uplink/downlink dictionary learning can explore similar scattering effect between the uplink and downlink channel, leading to a joint sparse representation.
- Joint compressed channel estimation can further improve the recovery performance by utilizing uplink training information.