Iterative Quadratic Relaxation Method for Optimization of Multiple Radar Waveforms

Tuomas Aittomäki and Visa Koivunen
Department of Signal Processing and Acoustics
Aalto University

Introduction

- MIMO radars transmit multiple waveforms simultaneously
- Waveforms with low peak sidelobe (PSL) and peak cross-correlation (PCC) are desirable
- Waveform optimization is a demanding task
- Constraint on peak to average ratio of power (PAR) necessary to simplify transmitter front-end

Contributions

- Formulate the multiple waveform design problem as a minimax optimization on an oblique manifold
- Novel Iterative Quadratic Relaxation method with PAR constraint is proposed

Problem Formulation

- Sample cross-ambiguity function
 \[\chi_{ij}(\tau, F_d, T_c) = \frac{1}{T_c} \sum s_i(kT_c) \sqrt{s_j} \gamma(kT_c + \tau) e^{j2\pi F_d T_c} \]
 - \(\tau \) is the time delay
 - \(T_c \) is the sampling interval
 - \(F_d \) is the Doppler frequency
 - \(\gamma \) is the compression factor
- Rewrite the sample cross-ambiguity function as
 \[\chi_{ij}(\tau, F_d, T_c) = s_i^H D(\tau, F_d, T_c) s_j \]
 - \(D(\tau, F_d, T_c) \) is a time delay and Doppler matrix
 - \(s_i \) is a vector containing the symbols of the \(i \)th waveform
- Waveform normalization \(\|s_i\|^2 = 1 \)
- Define main lobe half-width as one symbol in delay and \(f_0 \) in normalized Doppler

- Minimizing the max PSL and PCC
 \[\text{minimize} \quad \max_{i,j,k,f} \| s_i^H D_{ij} s_j \|_2 \]
 \[\text{s.t.} \quad \|s_i\| = 1 \quad \forall i \]
 \[|f| \geq \delta_i \delta_0 f_0 \]
- Additional PAR constraints
 \[|(s_i)_k|^2 \leq \frac{\text{PAR}_{\max}}{N_p} \quad \forall k, \]
 where \(N_p \) is the number of symbols

Proposed Algorithm

- Iterative Quadratic Relaxation (IQR)
- Update the waveforms iteratively by solving a convex problem
- Waveform at \(m \)th iteration \(s_i^{(m)} \)
- Solve for each \(i \) in an alternating manner

1. solve \(x_i \) from
 \[\min_{k,f} \left\| x_i^H D_{ij} s_j^{(m)} \right\|^2 \quad |f| \geq \delta_i \delta_0 f_0 \]
 \[\text{s.t.} \quad x_i^H s_j^{(m)} = 1 \quad \forall k \]
 \[\text{Re}\left\{ (s_i)_k (s_j^{(m)})_k \right\} \leq \frac{\text{PAR}_{\max}}{N_p} \quad \forall k \]
2. let \(y_k(r) = \frac{(s_i)_k}{(s_j^{(m)})_k} \) \(k = 1 \ldots N_p \) and solve \(r \)
3. update the waveform
 \[s_i^{(m+1)} = \frac{y(r)}{\|y(r)\|} \]

- The basic concept of the algorithm is shown in Fig.1

Numerical Examples

- Optimize a set of four polyphase waveforms with 40 symbols in each
- Random initial points
- No constraint on PAR, PAR at most 1.5, or constant modulus
- Compare IQR with other methods
 - Simulated Annealing (SA)
 - Greedy algorithm
 - Quasi-Newton on Manifold
 - Maximum Block Improvement (MBI)
- Averaged PSL and PCC for 20 initial points
- IQR algorithm was proposed for minimizing waveform sidelobes and cross-correlation
- Constraints on peak to average ratio of transmit power can be included in the IQR
- IQR algorithm provided the best waveform in most of the cases

Conclusions

- MIMO radar waveform optimization problem can be formulated as a quartic minimax problem on an oblique manifold
- IQR algorithm was proposed for minimizing waveform sidelobes and cross-correlation
- Constraints on peak to average ratio of transmit power can be included in the IQR
- IQR algorithm provided the best waveform in most of the cases

Figure 1: Illustration of the basic concept of the proposed algorithm with 2D cuts of the objective function on the constraints. The initial formulation contains a norm constraint that is nonconvex. Relaxing this into linear constraint a convex problem is obtained that can be solved iteratively.

Figure 2: Number of function evaluations required to achieve certain PSL and PCC level for different optimization algorithms in one initialization. IQR requires large number of function evaluations but provides the lowest combined PSL and PCC value in this example.