Keyword search using query expansion for graph-based rescoring of hypothesized detections

Authors: Van Tung Pham1,2, Haihua Xua2, Xiong Xiao2, Nancy F. Chen3, Eng Siong Chng1,2, Haizhou Li1,2,3

1School of computer Engineering, Nanyang Technological University, Singapore
2Temasek Laboratories, Nanyang Technological University, Singapore
3Institute for Infocomm Research, Singapore
Introduction

• This work belongs to **Keyword Search (KWS)** - the task of finding all occurrences of a text keyword in a speech corpus

```
Audio=A1 start=2.1 end=2.5 score=0.61
Audio=A2 start=3.3 end=3.8 score=0.14
Audio=A2 start=7.7 end=8.3 score=0.07
...
```

• Detection scores are estimated from a standard model-based, parametric Automatic Speech Recognition (ASR)

• In this work we proposed a novel framework to **re-score** the list of detections using **keyword examples** extracted from training data
Introduction (cont.)

• Main idea: if a detection is *acoustically* more similar to the keyword samples, it is more likely to be a correct detection

• The acoustic similarity can be estimated through Dynamic Time Wrapping (DTW)
 • DTW has shown to be successful in the Query-by-example task
 • It is a template-based, non-parametric approach => complementary with ASR scores
Outline

• Proposed approach
 • The rescoring framework
 • Samples extraction
 • Rescore by multiple samples
 • Rescore by graph-based algorithm

• Experiment
 • Experimental setup
 • Experimental results, analysis and discussion

• Conclusions and future works
Outline

• Proposed approach
 • The rescoring framework
 • Samples extraction
 • Rescore by multiple samples
 • Rescore by graph-based algorithm

• Experiment
 • Experimental setup
 • Experimental results, analysis and discussion

• Conclusions and future works
The rescoring framework

1) Rescoring by multiple samples (RMS)
2) Graph-based rescoring with sample (GBRWS)
Samples extraction

• Estimate the time boundary of each word in training data using forced-alignment

• Consider keyword $q = W_1 \ W_2 \ldots \ W_n$

 • If the whole sequence $W_1 \ W_2 \ldots \ W_n$ appear in the training data, then we extract the whole speech segment at the found locations as samples

 • Otherwise, find samples of W_i then concatenate them to form sample of q

 • To ensure quality, samples of W_i should belong to same gender
 • Since number of generated samples is large, we randomly select 20 samples.
Acoustic similarity estimation

• First we estimate the dynamic time warping (DTW) between 2 segments

• Then convert the DTW metric to similarity

\[S(X, Y) = 1 - \frac{DTW_{\text{max}} - DTW(X, Y)}{DTW_{\text{max}} - DTW_{\text{min}}} \]
Rescoring by multiple samples (RMS)

• Let d be a detection with raw ASR score $C(d)$

• Estimate the average similarity between d and all samples

$$\text{AVG}_\text{SIM}(d) = \frac{1}{n} \sum_{i=1}^{n} S(d, x_i)$$

• The final confidence score is

$$C'(d) = C(d)^\delta \text{AVG}_\text{SIM}(d)^{1-\delta}$$
The Graph-based rescoring with sample (GBRWS)

List of detections
- Audio=A1 start=2.1 end=2.5 score=0.31 (d₁)
- Audio=A2 start=3.3 end=3.8 score=0.14 (d₂)
- Audio=A2 start=7.7 end=8.3 score=0.07 (d₃)
- Audio=T1 start=1.1 end=1.6 (s₁)
- Audio=T2 start=3.6 end=4.2 (s₂)

List of samples

\[G(x_i)^t = (1 - \alpha - \gamma)C(x_i) + \alpha \sum_{x_j \in D(x_i)} G(x_j)^{t-1}S'(x_i,x_j) + \gamma \sum_{x_j \in E(x_i)} G(x_j)^{t-1}S'(x_i,x_j) \]

Contribution from Initial scores
Contribution from other detections
Contribution from keyword samples

- Previous works [1,2,3] use only detections to build the graph
Outline

• Proposed approach
 • The rescoring framework
 • Samples extraction
 • Rescore by multiple sample
 • Rescore by graph-based algorithm

• Experiment
 • Experimental setup
 • Experimental results

• Conclusion and future work
Experimental setup

• NIST OpenKWS15 data set
 • Language: Swahili – the surprise language of OpenKWS15 Evaluation
 • Training data: FullLP condition 40h.
 • Development data: 10h
 • Evaluation data: 15h evalpart1 released by NIST
 • Keyword list: eval keyword which 1860 keyword appear in evalpart1 data
 • We evaluate the performance of detected keyword

<table>
<thead>
<tr>
<th>Systems</th>
<th>Detected keywords</th>
<th>Keywords with samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>1711</td>
<td>1509</td>
</tr>
<tr>
<td>Subword</td>
<td>1620</td>
<td>1514</td>
</tr>
</tbody>
</table>
Experimental setup (cont.)

• Evaluation metric
 • NIST define the Term-weighted value (TWV) as the metric for KWS

\[
TWV(\theta) = 1 - \frac{1}{M} \sum_{k=1}^{M} ((P_{miss}(q_k, \theta) + \beta P_{fa}(q_k, \theta))
\]

• We use Maximum TWV (MTWV) as evaluation metric
• We also report the Detection Error Tradeoff (DET) curves

• Keyword search systems: We build word and subword-based systems using Kaldi toolkit [4]
 • For subword, we use Morfessor toolkit[5] to split both word lexicon and word transcriptions to morpheme-based format.
 • ASR training: fbank feature, 3 gram LM, DNN acoustic model
Experimental results

• 2 baselines
 • Raw ASR scores: Original detection scores
 • GBR: Graph based rescoring without training samples [1,2,3]

• MTWV scores

<table>
<thead>
<tr>
<th>Systems</th>
<th>Raw ASR scores</th>
<th>GBR</th>
<th>RMS</th>
<th>GBRWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>0.5616</td>
<td>0.5797</td>
<td>0.5727</td>
<td>0.5846</td>
</tr>
<tr>
<td>Subword</td>
<td>0.4716</td>
<td>0.5067</td>
<td>0.5028</td>
<td>0.5224</td>
</tr>
</tbody>
</table>

RMS: Rescoring by multiple samples
GBRWS: Graph-based rescoring with sample
Experimental results (cont.)
Experimental results (cont.)

• Results for different keyword length

Word system

Subword system
Outline

• Proposed approach
 • The rescoring framework
 • Samples extraction
 • Rescore by multiple sample
 • Rescore by graph-based algorithm

• Experiment
 • Experimental setup
 • Experimental results, analysis and discussion

• Conclusion and future work
Conclusion and future work

• Using keyword samples, together with acoustic similarity, improves the KWS performance
 • The graph based method is more effective than RMS method
 • The proposed approach benefits more for the subword system
 • Much improvement observed on short keywords

• Future work
 • The current method is applicable on seen-word keywords
 • We are investigating way to generate samples for an unseen-word keyword by concatenating samples of its subwords
References

feature similarity between search results for spoken term detection on lowresource,” in
Proceedings of ICASSP, 2013

graph-based re-ranking in feature space,” in Proceedings of ICASSP, 2011.

Workshop on Morphological and Phonological Learning of ACL-02, 2002
Thank you for listening!

Any question?